A DSP Version of
Coherent-CW (CCW)

Obtain the advantages of coherent detection
of Morse signals using DSP

technique for digging weak CW

signals out of the noise. The sys-
tem synchronizes the receiver to the
sender’s keying. Thereafter, duetothe
rules of Morse code (each “dah” equals
exactly three “dit-times;” and spaces
between marking elements are always
an integral multiple of one dit time)
the receiver knows precisely when the
carrier is allowed to turn on or off. This
is useful information that would oth-
erwise have to be transmitted—at the
expense of additional power and/or
bandwidth. Of course, the sender must
have an absolutely rock-steady rhythm
for the scheme to work. For this rea-
son, CCW stations employ special
keyers or keyboards which can gener-
ate perfectly timed code. Tradition-
ally, CCW uses a keying rate of 12
WPM (100 milliseconds per dit) and a
received audio tone of 800 Hz.

The receiver divides its time into
100-ms windows, or frames. Once syn-
chronized, there is complete certainty
that the incoming tone is either
present or absent for the entire 100-
ms window—the rules of Morse code

C oherent CW (CCW) is an old

29 Sommet Vert

St. Adolphe d’'Howard, QC
JOT 2B0 Canada

24-hr BBS: 514 226 7796

by Bill de Carle, VE2IQ

prevent it from switching somewhere
in the middle. This knowledge makes
it possible to use a matched filter
(sometimes called an integrate-and-
dump filter) to reduce the receive
bandwidth down to about 9 Hz (main
lobe), eliminating most of the noise
while letting the CW tone pass
through unscathed (see Fig 1). All co-
herent 800-Hz energy received during
the window is integrated (accumu-
lated), and only at the very end of each
window does the receiver make its
decision—and the question is: “during
the previous 100 milliseconds, was the
key at the transmitter up or down?”
The question is answered by com-
paring the measured amplitude of the
800-Hz tone to some threshold value—
more received energy means the key
probably was down, less energy means
it probably was up. If the receiver de-
cides the key was down, it sounds a
local sidetone oscillator for the next
100 ms. Apart from the 100-ms delay
between the incoming audio and the
regenerated tone, the sidetone signal
follows the received code faithfully,
and of course there is absolutely no
electrical noise present from that
point on since the signal has been com-
pletely rebuilt by the receiver. It is like
a repeater on a fiber-optic cable. At
each stage, hardware makes a firm
decision based on a marginal situation

Page 25, QEX, February 1994, published by The American Radio Relay League, Inc.

then announces confidently whether
the window was marking or spacing.
Noise (at least in its common form) is
completely removed from the incom-
ing signal, so a human operator can
copy it without stress. That is, as long
as the hardware makes the right deci-
sion at the end of each window! If the
signal-to-noise ratio is so awful that
the matched filter gets a wrong an-
swer, a different kind of noise enters
the picture: the system still generates
perfect code at its output, but it’s no
longer the same message the transmit-
ter originated. Then the human opera-
tor can step in and say, “Hey, that
didn’t make sense!,” and try to figure
out what the real message must have
been based on context, prior knowl-
edge, etc.

It has been argued that a seasoned,
skilled CW operator can perform the
same filtering operation as CCW per-
forms with his brain, concentrating
on the incoming code while blissfully
ignoring all the other stuff in the re-
ceiver’s passband at the time. Maybe
so, but it’s pretty hard work. An
equally narrow (9-Hz) conventional
audio filter wouldn’t help either: the
circuit’s response time would be so
slow it would spread out the leading
(attack) and falling (decay) edges of
the keyed waveform in time, blurring
the distinction between marks and

February 1994 25

Fig 1—Amplitude response of an integrate-and-dump
filter for a small range of audio frequencies near

800 Hz.

This is the characteristic response for both the
traditional matched filter built with analog parts
(operational amplifiers, resistors, capacitors) and for
the DSP version described in this article, built with
computer code. Notice the notches every 10 Hz (810,
820, 830 Hz...), and the peaks in the sidelobes—also
every 10 Hz, but centered on 815, 825, etc. These
sidelobes sometimes allow enough energy from QRM
to get through the filter to hurt us; they could be
removed (at least drastically attenuated) with further
digital processing if we were willing to pay the price:
additional computing time. We chose to go with the
classic filter response to satisfy the CCW purists and
to keep the number crunching requirements
reasonable so the program can run on slower 730 740 750 760 770 780

computers.

Those infinitely deep notches every 10 Hz can be
put to practical use. A Lowfer (160..190 KHz) beacon operator might choose a
carrier frequency of say 187.530 kHz, placing it halfway between two
power-line harmonics. When the integrate-and-dump filter is centered on this
carrier, all harmonics of the 60-Hz power line will be notched out

simultaneously. Fine business!

spaces. After all the votes are in, it
would seem that coherent CW carries
an advantage of some 20 dB over regu-
lar CW at 12 WPM. So why doesn’t
everybody do it that way? Answer: up
until now it has been quite difficult to
get a CCW station on the air. Once syn-
chronization had been established, in
order to keep the transmitter and re-
ceiver from drifting apart, expensive
frequency standards were needed at
each end of the link. Transceivers had
to be stabilized, usually by phase-
locking their master oscillators to
some common external standard such
as WWVB. And that integrate-and-
dump filter circuit was no piece of cake
to build and align. These technical
challenges have kept all but the most
dedicated devotees away from the
mode until now.

Can DSP Help?

Some years ago I designed and built
a DSP engine dedicated to receiving
CCW. It worked, but it was far too
complicated—some fifty ICs on the
board. I concluded that no one else
would ever build one of those things,
and I was right. At the time, personal
computers were just coming on the
scene and I didn’t think there was
enough processing power in them to do
the job. But then there appeared ATs,
386s, 486s, and I thought it might be
worth another look. Maybe, with very
careful coding, we could do the DSP
function on existing ham-shack com-
puters with a minimum amount of
external hardware. If so, the cost

26 QEX

would be next to nothing and many
more people could get in on CCW. Af-
ter doing an audio spectrum analyzer
project (see “A Receiver Spectral Dis-
play using DSP,” in Jan 1992 @ST) 1
realized that a CCW program using
the same analog interface was fea-
sible. This interface is a Sigma-Delta
analog-to-digital coverter circuit that
measures about 4 inches by 1.8 inches
and runs off a 9-V battery. It uses a
handful of common CMOS chips and
can be built in an evening. It also can
be purchased assembled and tested,
ready to hook up. This circuit samples
the received audio 7,200 times each
second, converts the measured volt-
ages to numbers, and passes these to
the computer through one of its serial
ports (eg, COMI1) running at 115
kbaud. No modifications to the radio
or the computer are required. It is ex-
actly the same board described in the
QST article and also in the '93 Hand-
book. Some of you will already have
one.

What Does the Software Look
Like?

The primary thing to keep in mind is
that we are going to be hard pressed
for time. At 7,200 samples per second,
a new sample point’s numerical value
is fed into the computer every 139 mi-
crosecands. The software has to ser-
vice the UART (serial port) interrupt,
read the measured voltage, and per-
form the DSP filtering operation 7200
times per second. With real tight cod-
ing it can be done, and in the time left

Page 26, QEX, February 1994, published by The American Radio Relay League, Inc.

over we can do some other pretty neat
things as well. The challenge is to re-
duce the time spent handling inter-
rupts to the absolute minimum. The
computer has to be able to process the
incoming numerical samples at least
as fast as they are acquired (ie, in less
than 139 us per sample, on average).

For this algorithm to work, we can-
not afford to turn off the interrupts
while we do some heavy computing;
the interrupts have to be always en-
abled to guarantee that we don’t miss
a single sample. DOS systems usually
have several “background” tasks that
become active periodically, sometimes
shutting off the system interrupts for
up to a millisecond at a time. So the
program’s first action is to take over
the DOS timer interrupt to make sure
no other program gets control of the
machine—even for a millisecond—
while the DSP algorithm is running.
In writing the program, I concentrated
on shaving cycles from the serial-port
interrupt service routine. In real-time
programming, what’s crucially impor-
tant is to reduce the amount of time
the computer spends on things which
are done often (eg, 7,200 times every
second). Things which happen less fre-
quently can be coded a little more slop-
pily. How to minimize the interrupt
service time? Well, we would like very
much to avoid any particularly long
machine instructions, such as multi-
ply or divide.

The classic integrate-and-dump
(I1&D) filter works by first shifting the
frequency of the incoming 800-Hz tone

Fig 2—Each cycle of an 800-Hz sinewave takes 1.25
milliseconds. Digitizing the audio at the rate of 7,200

samples per second, we measure the instantaneous RN

voltage nine (9) times during this same period. The
analog waveform advances through forty (40) degrees

of phase between samples.

To measure the amplitude of this signal (which
may be buried in the noise), we use the principle of
least squares to “fit” an 800-Hz sinewave on to the
sampled data points. A least-squares fit gives us the)JA
best estimate of the signal’s amplitude and phase. The
formula requires us to multiply each voltage sample by
the sine of angle X, and then to sum the resulting
product into an accumulator. We must also multiply by
the cosine of X, summing the result into a different
accumulator. The angle X is advanced by 40 degrees
after each sample. This normally takes two
multiplications and two additions per sample, plus the
overhead required to service the interrupt, read the
voltage, advance the phase angle, etc.

B

\i
1.25 Ms

; —/
\\ J
.
\ I
G
.

v,

Notice that after the first nine samples (A through I), the tenth sample (J)
will occur at exactly the same relative position on the second cycle as our (A)
sample did on the first cycle. in other words, the angle X for sample J should be
the same as the angle we used for sample A. Similarly, sample K will have the
same phase angle as sample B and so on. This is a stroke of luck for us, and
happens only because we have chosen a sampling rate which is an exact
integral multiple of the frequency of the sinusoid whose amplitude we want to

measure.

down to “baseband” (dc). This is done
by mixing the audio with an 800-Hz
reference tone. Once at baseband, the
energy in the signal is split into two
separate channels called in-phase (I)
and quadrature (Q). These channels
are then independently integrated
over the 100-ms window. This is essen-
tially an averaging-over-time opera-
tion and is only feasible because at
0 Hz (dc) the 1 and Q channels don’t
change their values with time. How-
ever, ifthe incoming tone is not exactly
at 800 Hz, a beat note will be gener-
ated and will cause problems for us, at
least to some degree. Let’s take an
example. At 800 Hz, a 100-ms frame
consists of exactly 80 cycles of that
sinusoidal waveform. We mix it with
our 800-Hz reference tone and we get
exactly 0 Hz, or d¢, which can be aver-
aged. Now let’s say the incoming fre-
quency was not 800 Hz, but rather
790 Hz. The beat note will be 10 Hz.
But if you look at it over 100 ms, or a
tenth of a second, there will be only one
complete cycle. If we take the average
value of its voltage over that 100-ms
period we come up with zero! It’s posi-
tive for halfthe time, equally negative
for the other half, and the average
value is zero volts. It matters not one
iota what the starting amplitude of
that 790-Hz tone was; the output of our
I&D filter will be zero. And likewise for
any frequency that is spaced away
from 800 Hz by an any exact multiple
of 10 Hz. Between 800 Hz and 790 Hz,

the filter’s response takes on interme-
diate values, ranging all the way from
0 dB at 800-Hz down to minus infinity
dB (total attenuation) at 790 Hz.

At the end of each 100-ms integra-
tion period, the classic hardware filter
freezes the instantaneous voltages on
its integrating capacitors and, based
on the values of the I and Q channels
averaged over the interval, computes
the average amplitude of the 800-Hz
tone during that period. (It could also
compute the phase of the tone relative
to that of the 800-Hz local reference
oscillator, but that generally is not
done.) The hardware version of an I1&D
filter then has to dump all the charge
from those capacitors instantly to
start measuring the signal in the next
window. This is physically impossible
with real hardware integrators, so in
practice we always waste a little of
each frame right at the beginning
while the capacitors are discharged of
the voltages built up during the previ-
ous frame. (Well, not absolutely im-
possible: one could set up two complete
filters and switch between them on
alternate frames, I guess.)

So, how can we get the same answer
with a DSP algorithm, get around the
old problems, and hopefully avoid hav-
ing to build the hardware filter at all?
Our basic challenge is to estimate the
amplitude of an 800-Hz sinusoid
which is assumed to be unvarying
throughout the entire 100-ms window,
and which is likely to be much weaker

Page 27, QEX, February 1994, published by The American Radio Relay League, Inc.

than any number of interfering carri-
ers present in the receiver’s passband
at the same time. The classical DSP
solution to this would be to emulate
the hardware 1&D filter in software.
We multiply the incoming samples
with a unit vector rotating at 800 Hz
to get instantaneous values of the I
and Q components of the baseband sig-
nal, then we integrate (add up) all
these values over 100 ms, eventually
dividing by the total number of
samples taken to obtain the averaged
I and Q values. Then we compute the
square root of the sum of the squares
ofthe two mutually-orthogonal compo-
nents, and that’s the answer. (We
could also calculate the phase of the
received sinewave by computing the
arctangent of the ratio of the Q and I
components.) In this particular case, at
7,200 samples per second, each 100- ms
window would consist of 720 samples.
Which would mean 720 x 2 multiplica-
tions, 720 x 2 additions, plus a whole
bunch of other time-consuming stuff
at the end of each window (such as cal-
culating the square root, clearing the
accumulators, etc). All of thisis math-
ematically equivalent to “fitting” an
800-Hz sinusoid to the sampled data
points by least-squares, then solving
for its amplitude and phase. That’s a
lot of number crunching to get done in
a tenth of a second, even for today’s
faster home computers. And there
isn’t a whole tenth of a second avail-
able either—a good portion of the time

February 1994 27

Fig 3—This shows how the “running average” version of an
integrate-and-dump filter is configured. We integrate the input
signal continuously without ever clearing (resetting) the integrator
circuit. But we also integrate a delayed version of the same signal
(it’s delayed by 100 milliseconds), then we subtract the outputs of
the two integrators. The resulit is the integral of the signal over the
last 100 milliseconds, and it can be sampled at any time, not just at
the end of some particular window. The Coherent program uses
this scheme to sample the DSP filter’s output three times near the
end of each window: a little early, at the nominal time, and a little
late. These numbers are then compared to see if we need to adjust

Integrator 1 +

el

Qutput

Input

the timing. In CCW it is important to keep the tracking window on
top of the sender’s window with the smallest possible amount of
stagger. For example, if the window is lagging during a mark-space
sequence, not only is there less mark energy available to detect,
there is also more (erroneous) space energy due to the part of the

Delay
100 msec

Integrator 2

mark pulse which is received in the following window. Since the
recovered intelligence depends on our ability to distinguish
between mark and space, this is a double-whammy that can rapidly
degrade copy if we allow the transmitter and receiver to start

drifting out of sync.

goes for overhead (pushes, pops, etc)
in servicing those 720 interrupts—the
DSP algorithm has to operate in what-
ever time is left over after all that. So
it’s tough, eh? Well, here is where we
start getting lucky. On most comput-
ers a multiply instruction takes much
longer to execute than a simple addi-
tion, so we would be far ahead if we
could eliminate those two multiplies
per sample—and it just so happens we
can. We know that at 7,200 samples
per second, each individual cycle of an
800-Hz tone takes exactly 9 samples to
cover. In other words, during the time
between each sample and the follow-
ing one, an 800-Hz sinusoid will have
advanced through 40 degrees of phase.
And 40 x 9 = 360 degrees, which is one
complete revolution exactly. Eureka!

After 9 samples have been pro-
cessed, the coefficients we have to
multiply the samples with will start to
repeat, taking on the same sequence
of values for the next 9 samples, and
so on. So of our 720 samples in total,
80 of them will be multiplied by two
particular numbers, another 80 will be
multiplied by a new two-number set,
etc. This good fortune is entirely at-
tributable to the fact that our sam-
pling rate just happens to be an exact
integral multiple of the frequency of
the sinusoid whose amplitude we want
to measure. We can take advantage of
it by using something called the dis-
tributive law (in algebra): AxB + AxC
+ AxD equals AX(B+C+D). You get
exactly the same answer in the end,
but one way needs three multiplies
and two adds, the other way needs only
one multiply and two adds. We will use
this to solve for the average I and Q

28 QEX

component values with only 18 multi-
plies per 720 samples instead of 1440!

But there is another trick available.
It turns out that the cosine of 40 de-
grees (one of our sample phases) has
the same value as the cosine of 320 de-
grees (another one of our points). Like-
wise, of the remaining seven coeffi-
cients, six of them can be paired up in
this way, the seventh is unity, and it’s
real easy to multiply by one! On the
sine side, 8 of the 9 coefficients can be
paired (allowing for sign changes), the
other coefficient is zero (it's even
easier to multiply by that, hi!). The
bottom line is that by combining terms
we can get by with just 8 multiplica-
tions instead of the 18 that would oth-
erwise be needed. This is starting to
look doable!

What we have to obtain during each
100-ms window are the end values of
nine (9) accumulators, and on each of
the 720 interrupts we only have to add
the current sample into one of those
nine accumulators. For each interrupt
we sum into another accumulator, and
after the ninth sample has been pro-
cessed we start over with the first
accumulator. Thus, aside from the
house-keeping associated with servic-
ing the interrupt, checking for over-
runs and/or clipping, figuring out which
accumulator to address and such mun-
dane things, we are left with a simple
addition to perform. For sure, at the
end of the 100-ms window we must
do some further calculations, but we
have all the time in the world (rela-
tively speaking) to get them done in
the 100 ms during which the data for
the next-following window are being
acquired.

Page 28, QEX, February 1994, published by The American Radio Relay League, Inc.

Now, there is one little complication:
I would like to run not one, but three
(3) 1&D filters concurrently. These
three filters should overlap in time so
that by comparing the three outputs I
candecide ifthe window phaseis drift-
ing and it would be advantageous to
make a slight adjustment to the phas-
ing cycle that determines when each
window starts and ends. The most eco-
nomical way to run three such I&D fil-
ters concurrently is never to clear the
various accumulators. Instead, I keep
a “delay line” in memory, consisting of
the last 720 samples taken. For each
new sample, [add it into the appropri-
ate accumulator, then subtract off the
value of the sample taken 720 time
slots earlier. In this way the accumu-
lators are guaranteed not to overflow,
because in the long run we subtract
out as many counts as we add in.
Furthermore, at the end of every 9
samples (one cycle of the 800-Hz audio
signal)—the nine accumulators al-
ways hold exactly the same numbers
you’d get if you started 100 ms ago
with cleared accumulators and inte-
grated through one complete window’s
worth of samples. Try doing that with
analog integrators! It works on the
computer because digital fixed point
arithmetic is absolute-—there are no
errors such as would arise in an ana-
logintegrator due to charge leaking off
a capacitor, component values chang-
ing slightly with temperature, etc.
Any analog integrator would eventu-
ally saturate at one rail or the other
due to such errors. The digital integra-
tor can run for hours (or days) with
absolutely no accumulated long-term
error.

We still must “sample and hold” the
values in those nine accumulators
whenever we have to compute the
amplitude of the measured component
over that particular window. This in-
volves moving nine 16-bit numbers to
secondary storage positions. It is done
with a single block move instruction
and has no impact whatsoever on the
processing of subsequent samples, so
the computer version can start to pro-
cess each new window immediately
(not throwing away any of the incom-
ing energy) as opposed to the analog
version, which has to wait for the ca-
pacitors to discharge fully before
starting a new integration cycle.

At the end of each window, we must
then compute the amplitude of the
measured 800-Hz component. This
involves those eight multiplications
mentioned above, then taking the
square root of the sum of the squares.
This is done in tightly coded assembly
language in order to execute in the
shortest possible time.

As a fine-tuning aid for the opera-
tor, the program also measures the fre-
quency of that 800-Hz component (to
the nearest tenth of a Hz) and displays
it on the computer screen, updated
at the end of each 100-ms window.
There is a trick to this: the frequency
has to be measured after the DSP
filtering operation. Otherwise, any
nearby strong carrier could disrupt
the measurement and give an errone-
ous reading. In fact, during each mark-
ing window (once we have decided that
the 800-Hz tone was indeed present
during that window) we also measure
its phase (averaged over the entire
100-ms window) and save this for later
reference. On the next marking win-
dow, as long as it is not too far in time
away from the last measured one, we
measure the phase again. If there is
any slight discrepancy between the
frequency of the incoming 800-Hz tone
(from the receiver) and our precise
800-Hz reference tone (which is actu-
ally determined by the 1.8432-MHz
crystal oscillator on the Sigma-Delta
board), there will be some phase shift
in the detected signal (in the same way
the amplitude of the “beat note” varies
regularly whenever there is a slight
difference between two compared fre-
quencies). If we know the amount of
phase shift as well as the time interval
over which this phase shift accumu-
lated, we can figure out how much the
received frequency differs from the
nominal 800-Hz value, and there you
have it. The operator can set a soft-

ware switch to enable this phase com-
parison to also occur across an inter-
vening space frame (or not). If the
transmitter is phase-coherent from
one key-down to the next, then it is fea-
sible to use those two keydown periods
to measure his frequency. If not, then
the software only uses phases mea-
sured in consecutive marking frames
(eg, during a “dah”), when the key is
presumably held down for 300 ms con-
tinuously and the transmit carrier
could not change its phase during that
period.

That is the essence of a DSP version
of the integrate-and-dump filter. The
algorithm runs on just about any
IBM-compatible computer. The pro-
gram incorporating this algorithm is
called Coherent. There is enough time
left over after the DSP calculations to
allow for lots of other CCW goodies.
For instance, Coherent has an auto-
tune feature. It is important to keep
the incoming audio tone centered in
the filter’s rather narrow passband.
Coherent tracks the incoming signal’s
frequency. Ifit deviates more than half
a hertz from the nominal 800-Hz
value, Coherent issues a pulse on one
of two RS232 control lines to make the
receiver tune up or down by 1 Haz.
Many modern rigs can tune in precise
1-Hz steps by pressing the MIC up/
down buttons, so Coherent makes the
signals needed to do this automati-
cally. Once the signal has been tuned
in initially, the operator can sit back,
put his feet up, and leave the driving
to the computer. Even if his receiver
drifts in frequency (or if the trans-
mitter drifts) it’s no problem because
the software will retune the radio as
necessary to maintain the CW tone at
800 Hz.

Coherent also has a frame-phasing
tracking loop. After each 100-ms
frame is processed, the program looks
at whether the SNR would have been
better had the window ended 1 cycle
(1.25 ms) earlier or 1 cycle later. If
thereis consistent evidence that going
to a slightly earlier window would
improve the SNR, then the program
does this automatically. What this
means is that once synchronization
has been achieved, the operator can
let the program track the incoming
signal and adjust the phasing as nec-
essary to maximize the SNR advan-
tage the mode is capable of. With this
system, special frequency standards
and rig stabilization are no longer
needed. The only equipment you need
to operate CCW is a reasonably stable

Page 29, QEX, February 1994, published by The American Radio Relay League, Inc.

transceiver, the little Sigma-Delta
interface board, and a computer.

And, of course, the Coherent pro-
gram also lets you send CCW just by
typing on the keyboard. That should go
without saying. As well, the program
has a “beacon” mode, where a pre-
stored CCW message can be scheduled
to go out at precise time intervals
based on the computer’s clock.

And Now, Something to Think
About...

We have seen that by synchronizing
our receiver to the keying at the re-
mote transmitter it is possible to
shrink the passband of our receiving
filter down to a rather astonishing
nine hertz or so, in the process elimi-
nating much of the noise that would
otherwise render the signal unread-
able. That is fine for coherent CW sta-
tions, but what about ordinary CW—
where the guy at the other end is send-
ing by hand and his carrier can turn
on or off at any arbitrary time? After
all, the overwhelming majority of ama-
teur stations around the world don’t
use coherent CW. Is there anything we
cando with DSP to help dig these weak
signals out of the mud?

Consider a train of RF pulses, where
a carrier is switched on for, say 100
milliseconds, then switched off for the
next 100 milliseconds. Let’s assume
this signal is received by a normal
amateur sideband rig with its local os-
cillator tuned 800 Hz away from the
incoming carrier. Looking at the audio
coming out of the speaker, what fre-
quency components are present? Well,
that depends on your point of view!
On the one hand, if we take the posi-
tion that for a frequency component
to exist it must be present always
with unvarying amplitude and phase,
then we must presume many frequen-
cies, all adding up to make the on/off
pulsed waveform. On the other hand,
if we examine the waveform on an os-
cilloscope, we see 80 cycles of a pure
(800 Hz) sinewave inside each pulse
with no other frequencies present dur-
ing either the pulses or the silent peri-
ods. Common sense tells us there is
but one frequency (800 Hz), and that it
is only there some of the time. Since
there is only one frequency in the sig-
nal, it would make a lot of sense to use
an arbitrarily narrow filter (ie, 0-Hz
wide) centered on that 800-Hz tone.
Such a filter would eliminate all the
noise (QRM, QRN) except that which
happened tobe on exactly the same fre-
quency. The way we usually design

February 1994 29

highly selective (narrow) filters is to
take many samples spaced over a long
interval of time and combine them
mathematically to isolate the contri-
butions of all the individual frequen-
cies. Analog filters use the same tech-
nique, storing energy in reactive com-
ponents. The narrower the filter (the
higher the “Q”) the longer the energy
from any given cycle stays around in-
side the tank circuit. The drawback
with all these filters is that it takes a
long time for them to attain their final
output value after a step change in the
input signal (as is the case when a CW
carrier is keyed). The sharper a filter
is in frequency, the longer it takes (in
time) for it to respond. This is why
experienced CW operators will tell you
it doesn’t pay to use IF filters much
narrower than about 250 Hz when try-
ing to copy code by ear. Narrower fil-
ters actually make it harder to copy be-
cause they obliterate (smear) the
sharp leading edges of the keyed tones
which the ear needs to recognize code
patterns. But the characteristic time
spreading of such filters is not a result
of some insurmountable law of phys-
ics! It follows entirely from the par-
ticular way they were designed: they
observe a signal over a long timespan
to make fine distinctions in frequency
in order to realize the narrow re-
sponse.

The ideal filter for copying ordinary
CW would be 0-Hz wide and have an
instantaneous response time. When
the key went down at the transmitter,
the output of the “sliver” filter at the
receiver would reflect the amplitude
change immediately.

What approach can we take in de-
signing such a filter? A good question
is: for any given signal, how much of it
do we need—how long do we have to
observe it before we can break it down
into its component frequencies and
state what the amplitude at any spe-
cific frequency must be? Could we take
just a momentary snippet out of a
waveform, analyze it extensively on a
fast computer and figure out its com-
plete spectral content just from that
tiny portion we looked at? The answer
will surprise you. The answer is yes!
In fact, there is no minimum amount
of time for which we need to observe a
waveform in order to completely char-
acterize it. In theory, we could sample
a complex signal for just one instant
and immediately know the amplitude
of an 800-Hz sinusoid in it—regardless
of whatever other frequencies might
be present. The calculation gets a

30 QEX

whole lot more complicated when
many other frequencies are present,
but it still can be done. The most
straightforward case is when we know
there is only one sinusoid, say at
800 Hz, and we want to ascertain
its amplitude with just one instanta-
neous glance at the waveform.
Hmmm—if we knew the phase it
would be easy. With only a single volt-
age measurement taken at a known
point along a sine curve (phase), we
can determine its amplitude. Not
knowing the phase in advance, we
have to solve for it. Which means we
need at least two (2) independent mea-
surements, both taken at the same
instant in time. The actual sampled
voltage will do for one of them. For the
other we can use the first derivative—
the rate the voltage is changing at that
particular moment. This derivative
can be obtained without taking any
time: convert the voltage to a current,
run it through an inductor, and mea-
sure the instantaneous voltage across
the inductor. Here we have an imple-
mentation of our “ideal” CW filter for
the simplest case where there is only
one frequency component to resolve.
When there are many frequency com-
ponents to separate, we will obviously
need more information, but it is all

available in that same instant; the
higher order derivatives are mutually
orthogonal, hence independent, and
they’re there for the measuring. So it
is possible (at least in principle) to
design a CW receiving filter with arbi-
trarily narrow bandwidth (approach-
ing 0 Hz) and a virtually instanta-
neous response time. What’s needed is
hardware to differentiate a signal re-
peatedly and a very fast computing
machine to crunch the numbers.

Obtaining the Software

The following can be ordered from
the author:

Coherent CCW software package,
$20

Bare circuit board for constructing
Sigma-Delta interface, $24

Assembled and tested Sigma-Delta
board, ready to hook up, $95

All prices in US dollars, and please
include $5 for airmail shipment to
anywhere on the planet.

For more information on CCW, con-
tact:

CCW Interest Group

Peter Lumb, G3IRM

2 Briarwood Ave

Bury St Edmunds

Suffolk IP33 3QF

England /)

thot

work

Tears

Learn DSP
and Put your
Knowledge to

immediatelyl

Coming to a
Place Near You

will really

Ft. Lauderdale
Albuquerque

DSP.

Washington D.C.
Chicago, Dallas
San Jose, Long Beach

Page 30, QEX, February 1994, published by The American Radio Relay League, Inc.

