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Design of a Two-band 
Loaded Dipole Antenna

Calculate the LC trap values given the physical size of the 
antenna and two desired resonant frequencies. 

I wanted to put up a dipole antenna in my 
attic but didn’t have space for a full sized 40 
meter antenna. I came across a QST article1 
by Luiz Lopes, CT1EOJ, on a method 
to calculate the values of loading coils to 
resonate a short antenna on a frequency 
lower than the natural resonant frequency. 
It dawned on me that if adding inductance 
would effectively lengthen an antenna then 
adding capacitance would effectively shorten 
it and that Lopes’ method would work to find 
the capacitance as well.

A parallel LC circuit is inductively 
reactive below its resonant frequency, and 
a capacitively reactive above its resonant 
frequency. So if I replaced Lopes’ loading 
coil with a parallel LC trap. I could find L and 
C values that would make the trap have just 
the right inductive reactance at one frequency 
to resonate an antenna at that frequency, and 
at the same time have the right capacitive 
reactance to make the antenna effectively 
shorter, and hence resonant, at some higher 
frequency. This article explains how to 
calculate the LC values given the physical 
size of the antenna and the two desired 
resonant frequencies.

Calculating the Reactances
We can compute the reactances needed at 

two specified frequencies using the method 
of Lopes. When we shorten the antenna 
we are removing a piece of the full size 
dipole and replacing the cut piece with an 
inductance. Figure 1 shows half of a dipole 
where the dashed part represents the piece 
removed to shorten the antenna. Only half 
of the dipole is shown since the locations of 
the loading elements will be symmetrically 

placed about the center. These calculations 
also apply to a loaded vertical antenna. The 
location of the piece and its length are both 
design choices. One sets the total length by 
some external constraint, then chooses the 
location of the cut to optimize some aspect of 
the antenna behavior. The needed inductive 
reactance value is given by the difference 
in reactance between points “A” and “B” in 
Figure 1. Note that if the antenna is too long 
it is the same as adding a negative gap to the 
normal dipole length. 

Lopes models the antenna as a single-
wire transmission line above ground. The 
reactance at any point along the transmission 
line is given by the transmission line 
equation, 

0 tan( )Z jZ b= , where Z0 is the 
characteristic impedance of the transmission 
line and b is the distance in electrical 
degrees from the center of the antenna to 
some point on the antenna. b is between 0 
and 90 degrees as we move out to a quarter 
wavelength along the dipole arm. For a 
single-wire transmission line above ground 
the characteristic impedance is,
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where h is the height of the antenna above 
ground, and d is the diameter of the wire, 
both in the same dimensions.

Note that the placement of the trap 
is governed by the requirement that the 
inner length must be shorter than a quarter 
wavelength at the higher frequency. Given an 
antenna length and two frequencies at which 
we would like it to be resonant, we can use 
the method of Lopes to calculate the value of 
inductive reactance for the lower frequency 
and the value of the capacitive reactance at 
the higher frequency. These are the effective 
values, and we need a trap that would have 
these reactances at the two frequencies. 

Parallel LC Network
The reactance of a parallel LC circuit is,
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where w0 is the resonant frequency of the 
circuit. It is more convenient for our purposes 
to re-write this equation in terms of w0 and X0 
the magnitude of the reactance of either of 
the components at the resonant frequency. 
With some algebraic manipulation we get,
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where X(w) is the effective reactance of 
the trap at frequency w.

We want the trap to have reactance X1 at 
the lower frequency w1, and reactance X2 at 
the higher frequency w2. From equation (2),
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Feed Point A B

Figure 1 — One side of a symmetrical 
loaded dipole shows the gap between A 

and B where length is removed and a trap is 
inserted.
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Divide equation (4) by (3) to eliminate X0 
to get an equation in terms of the reactance 
ratio at the two frequencies,
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Since we know X2 and X1 we can solve 
this last equation for 2

0ω , 
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We use this to solve for X0,
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The L and C Values
Given the antenna length that one 

wants to use, and the desired two resonant 
frequencies, we can calculate 2

0ω  and X0. 
From these we calculate the values of L and 
C that comprise the trap,
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The only remaining design parameter is 
where along the dipole arms to insert the trap. 
The Lopes design process gives the equations 
that calculate the X values needed for placing 
the trap at any location along the antenna 
arms subject to the constraint that the part of 
the antenna between the feed point and the 
trap must be less than a quarter wavelength 
at the higher frequency. In general we would 
like to keep as much of the center part of 
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Figure 2 — SWR calculated using NEC for 
the 30 m band.
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Figure 3 — SWR calculated using NEC for 
the 20 m band.

the full length dipole as possible since that 
is the part where the current, and hence 
the radiation, is highest. Also as we move 
the load towards the end of the antenna the 
values of the impedances needed increase 
rapidly.

Design Example
Here’s a design example (see Table 1) for 

a 40 foot antenna that will work on the 30 and 
20 meter bands. Using the above equations, 
the antenna has a characteristic impedance of 
536 W. The required inductance is 2.94 mH 
and required capacitance is 52.7 pF. 

Figures 2 and 3 shows SWR plots from a 
model of the above antenna using numerical 
electromagnetic code (NEC). To make the 
results more realistic, the optimal L and C 
values were changed to 3.0 mH and 53 pF.
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Notes
1Luiz Lopes, CT1EOJ, “Designing a 

Shortened Antenna”, QST, Oct, 2003, pp 
28 – 32.

Table 1
Design example for the 30 and 20 m 
bands
Antenna total length 	 40 feet
Antenna height 		  20 feet
Lower design frequency 	 10.1 MHz
Upper design frequency 	 14.05 MHz
Distance from center to trap 	14 feet
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Editor, QEX 

I want to thank David Brown for a series of productive and interesting discussions about the details of 

the calculations described in my paper.  Dave and several other hams contacted me about the details of 

the calculation.  It appears that the calculation of the impedance needed for the upper (shortening) 

frequency is confusing.  I would like to outline a simple alternative that avoids the idea of a “negative 

gap.” 

As David Brown has pointed out, if one uses antenna modeling programs one can iteratively adjust the 

value of the reactance to make the antenna appear λ/4 long.  Indeed using 4NEC2 I can use the 

optimization function to get values that are almost the same as the calculations above.  The advantage 

of the method I described is that one does not need to do a lot of iterative modeling to arrive at the two 

impedances needed to make the antenna dual band. 

In Figure 1A below I sketch the antenna as it would appear if the far end were exactly λ/4 away from the 

center.  Since the antenna is shorter than λ/4 at 10.1 MHz, there is a gap indicated by points A and B.  

The gap start is at the location of the trap. This gap will be replaced by an inductive reactance to make 

the antenna electrically λ/4 even though it is not physically that long. 

At 14.05 MHz the situation is illustrated by figure 1B.  Here the “outer” end of the cut is actually closer 

to the center than the “inner” end.  This overlap, or negative gap, the amount by which the antenna 

needs to be shortened, is going to be replaced by a capacitive reactance which will make the antenna 

appear to be exactly λ/4 long.   

 



I believe most of the confusion comes from measuring the impedances relative to one end of the 

antenna according to the Lopes’ paper. The location of the outer point, point A, is known since it is just 

the distance from the center of the antenna to the chosen trap location.  However, the computation of 

the location of point B relative to the center is not as clear.  But a simple trigonometric substitution 

makes the computation much easier.  If one were to measure the impedance along the transmission line 

model of the antenna from the end the impedance would be given by: 

Z0*cotan(β’)  

where in this case β’ is measured in electrical degrees from the end. Referring to figure 1A or 1B the 

impedance at the inner part (point A) is given by: 

Z0*tan(90*LA/λ/4).   

Where LA is the distance from the center to the trap.  The impedance at the outer, point B, is given by 

Z0*cotan(90*LB/λ/4) 

Where LB is the distance from the end of the antenna to the trap location. 

I will use the antenna design that I gave as an example: a 40 foot dipole tuned for resonance at 10.1 and 

14.05 MHz. The antenna is 20 feet above ground. The traps are placed 6 feet in from the ends of the 

dipole. 

The value of the reactance needed is just the difference of the impedance seen at points A and B.  If the 

antenna were exactly λ/4 long the impedance of the antenna would smoothly change from the open 

circuit at the end to the normal value at the center. The transmission line equation 2 in the paper 

[check] uses β which is the distance in electrical degrees from the end.  This angle will change from 0 

degrees at the end to 90 degrees at the center.  In terms of the physical distance the angle beta in 

degrees is given by: 

90* length/(λ/4) 

Now to the specifics of the calculations. 

At 10.1 MHz shown in figure 1A where point B is 6 feet from the end and point A is at 14 feet from the 

center where the distance from A to B, 3.17 feet, is enough to make the antenna λ/4 long.  Since the λ/4 

distance is 23.17 feet, these distances correspond to an electrical distance of 23 degrees to point B from 

the end and 54 degrees to point A from the center. A calculator gives the impedance of 1264 ohms at 

point B (536* cotan(23)) and 767 ohms (536*tan(54)) at point A. The difference Xb-Xa is 496 ohms which 

is the value of inductive reactance needed to make the antenna λ/4 electrically.  If one were to simply 

make a shortened antenna this would correspond to an inductance of 7.8 uH. 

At 14.05 MHz, λ/4 is 16.65 feet.  The electrical distance from the end to point B is 32 degrees and from 

the center to point A is 76 degrees.  Substituting these values into the transmission line equation we get 

the impedance at point B is 847 ohms and at point A is 2096 ohms. Note that now point A is at a higher 



impedance than at point B and so the difference Xb-Xa will be negative, as expected for a capacitive 

reactance.  The difference Xb-Xa is –1249 ohms which is the value of capacitive reactance needed to 

electrically shorten the antenna. If one were to make a single band antenna with these dimensions this 

would correspond to a capacitance of 9 pF. 

Once one has the impedances needed the formulas in the paper describe how to find the component 

values of a parallel L-C circuit that will have the desired impedances at the two frequencies of interest.  

 

David Birnbaum 
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