A Binaural I-Q Receiver

A receiver with presence... to fully appreciate this receiver, you've got to hear it!

I built this little receiver to illustrate an idea that I've been exploring for a number of years. It replaces the narrow filters and interference-fighting hardware and software of a conventional radio with a wide-open binaural I-Q detector. If you like a conventional receiver to a high-powered telescope, this receiver is a pair of bright, wide-field binoculars. The receiver's classic junk-box-available-parts construction approach achieves better RF integrity than that of commercial ham gear. A PC board and parts kit is available for those who prefer to duplicate a proven design.

My goal was a project that could be constructed in one weekend. With two working parents and three teenagers in the house, that "one weekend" wound up being spread over a period of about two months! Nevertheless, the total construction time was only 17 hours. There are a number of toroids to wind, and the total construction time was only 17 hours.

There are a number of toroids to wind, and the total construction time was only 17 hours. The human brain is a good processor for information presented in pairs. We have two eyes and two ears. Generally speaking, we prefer to observe with both eyes open, and listen with both ears. This gives us depth of field and three-dimensional hearing that allows us to sort out the environment around us. The ear-brain combination can be used to process the output of the I-Q detectors as shown in Figure 2.

The sound of CW signals on a binaural I-Q receiver is like listening to a stereo recording made with two identical microphones spaced about six inches apart. The same information is present on each channel, but the relative phase provides a stereo effect that is perceived as three-dimensional space. Signals on different sidebands—and at different frequencies—appear to originate at different points in space. Because SSB signals are composed of many audio frequencies, they sound a little spread in the perceived three-dimensional sound space. This spreading also occurs with most sounds encountered in nature and is pleasant to hear.

To keep the receiver as simple as possible, a single-band direct-conversion (D-C) approach is used. A crystal-controlled converter can be added for operation on other bands, changing the receiver to a single-conversion superhet. Alternatively, the binaural I-Q detector can be used in a conventional superhet, with a tunable first converter and fixed-frequency BFO. If proper receiver design rules are followed, there is no advantage to either design.

The Receiver Proper

Figures 3 through 5 show the complete schematic of the receiver. In Figure 3, signals from the antenna are connected directly to a 1 kΩ GAIN pot on the front panel. J1, a BNC antenna connector, is used in keeping with my "VHF construction techniques" theme. Adjusting the gain before splitting the signal path avoids the need for a two-gang volume control, and eliminates having to use separate RF and AF-gain adjustments. This volume-control arrangement leaves the "stereo background noise" constant and varies the signal-to-noise ratio. The overall gain is selected so that the volume is all the way up when the band is quiet. Resistor values R9 and R31 may be changed to modify the overall gain if required. After the volume control, the signal is split with a Wilkinson divider and connected to two SBL-1 diode-ring mixers. (The TUF-1 is a better mixer choice, but I had more SBL-1s in my junk box.) The VFO signal is fed to the two mixers through a quadrature hybrid, described by Reed Fisher.

Notes appear on page 48.

![Figure 1 — Simplified block diagram of a receiver using a DSP detector; see text.](image1)

![Figure 2 — Block diagram of an I-Q binaural receiver that allows the ear-brain combination to process the detector output resulting in stereo-like reception.](image2)
The accompanying photographs show the prototype receiver. Receiver controls are simple and intuitive. The ear-brain adjusts so naturally to binaural listening that I added a BINAURAL/MONO switch to provide a quick reminder of how signals sound on a conventional receiver. The switch acts much like the STEREO-MONO switch on an FM broadcast receiver—given the choice, it always ends up in the STEREO position on my receiver! The Koss SG-65 headphones identified in the parts list and shown in the photograph are not necessary, but they have some useful features. First, at $32, they are inexpensive. Second, they have relatively high-impedance drivers, (90Ω) so they can be driven at reasonable volume directly from an op amp. Finally, they make an attempt at low distortion. Other headphones in the same price bracket are acceptable, but some have much lower impedance and won’t provide a very loud audio signal using the component values given in the schematic. Those 2.95 bubble-packed, throw-away headphones are not a good choice! Audiophile headphones are fine, but don’t really belong on an experimenter’s bench. A stray clip-lead brushing across the wrong wire in the circuit can instantly burn out a driver and seriously ruin your day.

Building a Binaural Weekender

A few construction details are generally important. A few others were determined by the components that happened to be in my junk box. The big reduction drive is delightful to use, but doesn’t contribute to electrical performance. I purchased it at a radio flea market. The steel chassis provides a significant reduction in magnetic hum pickup, something that can be a problem if the re-
Except as indicated, decimal values of capacitance are in microfarads (\(\mu F\)); others are in picofarads (\(pF\)); resistances are in ohms; \(k = 1,000\).
\(P\) = Polyester
Close-up of the VFO. The simple VFO used in the prototype works exceptionally well, but must be completely shielded for good D-C receiver performance. An empty mushroom can lives again as a VFO shield.
with cross-polarized Yagis was an unsettling experience. The need for two antennas is a liability—these days, most of us struggle to put up one. A number of experiments have also been done with binaural independent sideband (ISB) reception. These are profoundly interesting for AM broadcast reception, and could be used for amateur AM or DSB reception using a Costas Loop for carrier recovery. Binaural ISB detection of shortwave AM broadcasting can be analyzed as a form of spread spectrum with the ear-brain serving the despreading function, or as a form of frequency diversity, with the ear-brain as an optimal combiner.

The binaural techniques described here are analogous to binocular vision: They present the same information to each ear, but from a slightly different angle. This provides a very natural sound environment that the brain interprets as three-dimensional space. There are other “binaural” techniques that involve the use of different filter responses for the right and left ears. My experiments with different filter responses for the left and right ears have not been particularly interesting, and I have not pursued them.

Summary

This little receiver is a joy to tune around the band. It is a serious listening receiver, and allows digging for weak signals in a whole new way. Digging for weak signals in a three-dimensional sound field is sometimes referred to as the “cocktail party effect.” It is difficult to quantify the performance of a binaural receiver, because the final signal processing occurs in the brain of the listener—you. The experimental literature of psycho-acoustics suggests that the ear-brain combination provides a signal-to-noise advantage of approximately 3 dB when listening to speech or a single tone in the presence of uncorrelated binaural noise. The amount of additional noise in the opposite sideband is also 3 dB, so it appears that the binaural I-Q detector breaks even. In some applications, such as UHF weak-signal work, the binaural I-Q detector may have an advantage, as it permits listening to a larger slice of the band without a noise penalty. In other situations, such as CW sweeps, the “cocktail party” may get entirely out of hand. Binoculars and telescopes both have their place.

Notes

1The complete kit version, available from Kanga US, uses a different VFO circuit than the one shown here. The kit VFO runs at one-half the desired output frequency, and is followed by a balanced frequency doubler and driver amplifier. Price: Receiver and VFO PC boards with all board-mounted components, $115 plus shipping. Contact Kanga US, Bill Kelsey, NBET, 3521 Spring Lake Dr, Findlay, OH 45840; tel 419-423-4604, kanga@bright.net; http://www.bright.net/~kanga/.

2Steel chassis such as the Hammond 1441-12 (2x7.5 inches [HWD]) with 1431-12 bottom plate and the Hammond 1441-14 (2x9.5 inches [HWD]) with 143-14 bottom plate are suitable enclosures. These chassis and bottom plates are not available in single quantities directly from Hammond, but are available from Allied Electronics, 7410 Pebble Dr, Fort Worth, TX 76118; tel 800-433-5700, http://www.allied.avnet.com; or Newark Electronics, 4801 N Ravenswood Ave, Chicago, IL 60640-4496; tel 800-463-9275, 312-784-5100, fax 312-907-5217; http://www.newark.com.

References

Rick Campbell, KK7B, “Direct Conversion Receiver Noise Figure,” Technical Correspondence, QST, Feb 1996, pp 82-85.

Rick Campbell taught himself code and theory and passed the Novice test as a young teen. His early interest in radio has profoundly influenced his career. He has been a US Navy Radioman, studied surface physics at Bell Labs in the 70s, and designed direct-conversion image-reject satellite navigation receivers in the early ‘80s. From 1983 through 1996, he was a faculty member in Electrical Engineering at Michigan Technological University. During the early ‘90s, he held a summer appointment at the US Department of Commerce Institute for Telecommunications Science in Boulder, Colorado. In 1996, he left academia to join the advanced receiver development group at TriQuint Semiconductor in Hillsboro, Oregon. In addition to designing and building receivers, Rick also enjoys windsurfing, playing the violin and raising a family.

You can contact Rick at 4105 NW Carlton Ct, Portland, OR 97229; rickc@tqs.com.