
Introduction to the Arduino    1-1

CHAPTER 1

Introduction
to the Arduino

The Arduino has become wildly popular among the hobbyist community.
In 2011, there were an estimated 300,000 Arduino boards in use, not counting
the many “clone” boards produced under the Arduino’s unique Open Source
licensing model. With its standalone single-board design, the Arduino can
interface with a wide variety of sensors and controls easily and inexpensively.
Based on the Atmel series of microcontrollers, the Arduino, with its onboard
digital and analog I/O (input/output), is an easy and inexpensive way to build
extremely versatile electronic projects.

Released under the Open Source Creative Commons Attribution Share-Alike
license, the Arduino is totally Open Source, as described later in this chapter.
From the board designs and schematic files, to the Arduino programs (known as
“sketches”) and libraries, everything is Open Source. You are free to do whatever
you desire, as long as you properly credit the authors in your work and share
any changes you make to the existing code and libraries. For the most part, this
means that everything about the Arduino is either free or very low cost.

The Arduino Uno.

1-2    Chapter 1

One of the main benefits of Open Source is that you have a whole
community of hobbyists developing and sharing their projects freely. This can
save you many hours of work if someone is working on projects similar to
yours. You can freely integrate their libraries and code into your project, turning
what could have been a months-long programming ordeal into a much shorter,
more enjoyable path to a finished project

Along with the Arduino board itself, there is a vast selection of components
and modules designed to interface with the Arduino. These devices use the
various device communication protocols such as the Serial Peripheral Interface
(SPI) and Inter-Integrated Circuit (I2C) already built into the Arduino, allowing
simple connections to the Arduino using only a few wires. Now you can create
complex projects without having to dig through datasheets and solder for
months as you had to in days gone by. For example, the Lightning Detector
project presented later in this book needs only 11 wires to connect the lightning
detector module and the Nokia LCD display to the Arduino. Since the libraries
to communicate with these modules already existed, all that I had to do was
include the libraries in the project and get right down to the brass tacks of what
I wanted the project to be.

The Hardware

Although there are now numerous variations on the Arduino, the
most common Arduino, the Uno consists of an Atmel ATmega328 8-bit
microcontroller with a clock speed of 16 MHz. The ATmega328 has 32 KB of
flash memory, 2 KB of static RAM (SRAM), and 1 KB of electrically erasable
programmable read-only memory (EEPROM) onboard. The Arduino has 14
digital I/O pins. Six of these pins can also do pulse width modulation (PWM),
and six 10-bit analog inputs can also be used for digital I/O pins. Two of the
digital pins also directly support external hardware interrupts, and all 24 I/O
pins support pin state change interrupts, allowing external hardware control of
program execution.

Typically powered via the USB programming port, with its low current
drain and onboard power regulator the Arduino is ideally suited for battery
powered projects. The Arduino supports multiple communication protocols,
including standard Serial, Serial Peripheral Interface (SPI), Two-Wire
(also known as Inter-Integrated Circuit or I2C), and 1-Wire. Designed for
expandability, the Arduino I/O and power connections are brought out to a
series of headers on the main board. The header layout is standard among the
majority of the Uno-type boards and many of the basic Arduino add-ons, also
known as shields, can be plugged directly into these headers and stacked one
on top of the other, providing power and I/O directly to the shield without any
additional wiring needed.

Many types of shields are available, including all manner of displays,
Ethernet, Wi-Fi, motor driver, MP3, and a wide array of other devices. My
personal favorite is the prototyping shield, which allows you to build your own
interface to an even wider array of Arduino-compatible components, modules,
and breakout boards. You can find GPS, real time clock, compass, text-to-
speech, and lightning detection modules, for example, along with an endless

Introduction to the Arduino    1-3

list of sensors such accelerometers, pressure, humidity, proximity, motion,
vibration, temperature, and many more. We’ll explore some of these modules
and sensors in projects presented in later chapters of this book.

History
As living proof that necessity is the mother of invention, the Arduino was

created at the Interaction Design Institute Ivrea, in the northern Italian town
of Ivrea. Originally designed as an inexpensive Open Source tool for students,
replacing the more expensive and less powerful Parallax “Basic Stamp”
development platform then used by students at the institute, the Arduino began
as a thesis project in 2003 by artist and design student, Hernando Barragán,
designed for a non-technical audience.

This project, known as Wiring, was based on a ready-to-use circuit board
with an Integrated Development Environment (IDE) based on the Processing
language created by Ben Fry and one of Barragán’s thesis advisors, Casey
Reas. Wiring was then adapted in 2005 by a team co-founded by another of
Barragán’s thesis advisors, Massimo Banzi. This team consisted of Hernando
Barragán, Massimo Banzi, David Cuartielles, Dave Mellis, Gianluca Marino,
and Nicholas Zambetti. Their goal was to further simplify the Wiring platform
and design a simple, inexpensive Open Source prototyping platform to be used
by non-technical artists, designers, and others in the creative field. Banzi’s
design philosophy regarding the Arduino is best outlined in his quote “Fifty
years ago, to write software you needed people in white aprons who knew
everything about vacuum tubes. Now, even my mom can program.”

Unfortunately, at the same time, due a lack of funding the Institute was
forced to close its doors. Fearing their projects would not survive or be
misappropriated, the team decided to make the entire project Open Source.
Released under the Open Source Creative Commons license, the Arduino
became one of the first, if not the first, Open Source hardware products.
Needing a name for the project, the team decided to name it Arduino after
a local pub named “Bar Di Re Arduino” which itself honors the memory of
Italian King Arduin.

Everything about the Arduino is Open Source. The board designs and
schematic files are Open Source, meaning that anyone can create their own
version of the Arduino free of charge. The Creative Commons licensing
agreement allows for unrestricted personal and commercial derivatives as long
as the developer gives credit to Arduino, and releases their work under the
same license. Only the name Arduino is trademarked, which is why the various
Arduino-compatible boards have names like Iduino, Ardweeny, Boarduino,
Freeduino, and so on. Typically these boards are fully compatible with their
official Arduino counterpart, and they may include additional features not on
the original Arduino board.

Massimo Banzi’s statement about the Arduino project, “You don’t need
anyone’s permission to make something great,” and Arduino team member
David Cuartielles’s quote, “The philosophy behind Arduino is that if you
want to learn electronics, you should be able to learn as you go from day one,
instead of starting by learning algebra” sums up what has made the Arduino

1-4    Chapter 1

so popular among hobbyists and builders. The collective knowledgebase of
Arduino sketches and program libraries is immense and constantly growing,
allowing the average hobbyist to quickly and easily develop complex projects
that once took mountains of datasheets and components to build. The Arduino
phenomenon has sparked the establishment of a number of suppliers for add-on
boards, modules, and sensors adapted for the Arduino. The current (as of mid-
2014) Arduino team consisting of Massimo Banzi, David Cuartielles, Tom Igoe,
Gianluca Martino, and David Mellis has continued to expand and promote the
Arduino family of products.

Since its inception, the Arduino product line has been expanded to include
more powerful and faster platforms, such as the 86 MHz 32-bit Arduino
Due, based on the Atmel SAM3X8E ARM Cortex-M3 processor, and the
dual-processor Arduino Yun, which contains the Atheros AR9331 running
an onboard Linux distribution in addition to the ATmega32u4 processor that
provides Arduino functionality. With the Arduino Tre, a 1-GHz Sitara AM335x
processor based Linux/Arduino dual-processor design, the Arduino now has
the power needed to support processing-intensive applications and high speed
communications. The Arduino variants are discussed in more detail in Chapter 2.

What is Open Source?
Generally speaking, Open Source refers to software in which the source

code is freely available to the general public for use and/or modification.
Probably the best example of Open Source software is the Linux operating
system created by Linus Torvalds. Linux has evolved into a very powerful
operating system, and the vast majority of applications that run on Linux are
Open Source. A large percentage of the web servers on the Internet are Linux-
based, running the Open Source Apache Web Server. The popular Firefox web
browser is also Open Source, and the list goes on. Even the Android phone
operating system is based on Linux and is itself Open Source. This ability
to modify and adapt existing software is one of the cornerstones of the Open
Source movement, and is what had led to its popularity and success.

The Arduino team took the concept of Open Source to a whole new level.
Everything about the Arduino — hardware and software — is released under
the Creative Commons Open Source License. This means that not only is the
Integrated Development Environment (IDE) software for the Arduino Open
Source, the Arduino hardware itself is also Open Source. All of the board
design file and schematics are Open Source, meaning that anyone can use these
files to create their own Arduino board. In fact, everything on the Arduino
website, www.arduino.cc, is released as Open Source.

As the Arduino developer community grows, so does the number of Open
Source applications and add-on products, also released as Open Source. While
it may be easier to buy an Arduino board, shield or module, in the vast majority
of cases, everything you need to etch and build your own board is freely
available for you to do as you wish. The only real restriction is that you have
to give your work back to the Open Source community under the same Open
Source licensing. What more could a hobbyist ask for? Everything about the
Arduino is either free or low cost. You have a whole community of developers

Introduction to the Arduino    1-5

at your back, creating code and projects that you can use in your own projects,
saving you weeks and months of development. As you will see in some of the
projects in this book, it takes longer to wire and solder things together than it
does to actually get it working. That is the true power of Open Source, everyone
working together as a collective, freely sharing their work, so that others can
join in on the fun.

Open Source Licensing and How it Works
There are several main variations on the Open Source licensing model, but

all are intended to allow the general public to freely use, modify, and distribute
their work. The most common Open Source license models you will encounter
include the GNU General Public License (GPL), Lesser GPL (LGPL), MIT, and
the Creative Commons licenses. As a general rule, for the average hobbyist, this
means you are free to do as you wish. However, there will always be those of us
that come up with that really cool project we can package up and sell to finance
our next idea. It is important for that group to review and understand the various
license models you may encounter in the Open Source world.

The GNU GPL
As with all Open Source licensing models, the GNU General Public License

(GPL) is intended to guarantee your freedom to share, modify, and distribute
software freely. Developers who release software under the GPL desire their
work to be free and remain free, no matter who changes or distributes the
program. The GPL allows you to distribute and publish the software as long
as you provide the copyright notice, disclaimer of warranty, and keep intact all
notices that refer to the license. Any modified files must carry prominent notices
stating that you changed the files and the date of any changes.

Any work that you distribute and publish must be licensed as a whole
under the same license. You must also accompany the software with either
a machine-readable copy of the source code or a written offer to provide a
complete machine readable copy of the software. Recipients of your software
will automatically be granted the same license to copy, distribute, and modify
the software. One major restriction to the GPL is that it does not permit
incorporating GPL software into proprietary programs.

The copyright usage in the GPL is commonly referred to as “copyleft,”
meaning that rather than using the copyright process to restrict users as with
proprietary software, the GPL copyright is used to ensure that every user has the
same freedoms as the creator of the software.

There are two major versions of the GPL, Version 2, and the more recent
Version 3. There are no radical differences between the two versions; the
changes are primarily to make the license easier for everyone to use and
understand. Version 3 also addresses laws that prohibit bypassing Digital Rights
Management (DRM). This is primarily for codecs and other software that
deals with DRM content. Additional changes were made to protect your right
to “tinker” and prevent hardware restrictions that don’t allow modified GPL
programs to run. In an effort to prevent this form of restriction, also known as
Tivoization, Version 3 of the GPL has language that specifically prevents such

1-6    Chapter 1

restriction and restores your right to make changes to the software that works on
the hardware it was originally intended to run on. Finally, Version 3 of the GPL
also includes stronger protections against patent threats.

The Lesser GNU General Public License (LGPL)
The LGPL is very similar to the GPL, except that it permits the usage of

program libraries in proprietary programs. This form of licensing is generally
to encourage more widespread usage of a program library in an effort for the
library to become a de-facto standard, or as a substitute for a proprietary library.
As with the GPL, you must make your library modifications available under the
same licensing model, but you do not have to release your proprietary code. In
most cases, it is preferable to use the standard GPL licensing model.

The MIT License
Originating at the Massachusetts Institute of Technology, the MIT license

is a permissive free software license. This license permits reuse of the software
within proprietary software, provided all copies of the software include the MIT
license terms. The proprietary software will retain its proprietary nature even
though it incorporates software licensed under the MIT license. This license is
considered to be GPL-compatible, meaning that the GPL permits combination
and redistribution with software that uses the MIT License. The MIT license
also states more explicitly the rights granted to the end user, including the right
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell the
software.

The Creative Commons License
There are multiple versions of the Creative Commons License, each with

different terms and conditions:
•Attribution (CC BY) — This license allows others to distribute, remix,

tweak, and build upon a work, even commercially, as long as they credit the
creator for the original creation.

•Attribution-NonCommercial (CC BY-NC) — This license allows others to
remix, tweak, and build upon a work non-commercially. While any new works
must also acknowledge the creator and be non-commercial, any derivative
works are not required to be licensed on the same terms.

•Attribution-ShareAlike (CC BY-SA) — This is the most common form of
the Creative Commons License. As with the Attribution license, it allows others
to distribute, remix, tweak, and build upon a work, even commercially, as long
as they credit the creator for the original creation, and license their new creation
under the same license terms. All new works based on yours convey the same
license, so any derivatives will also allow commercial use.

•Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) — This
license allows others to distribute, remix, tweak, and build upon a work non-
commercially, as long as they credit the creator and license their new creations
under the identical licensing terms.

•Attribution-No Derivs (CC BY-ND) — This license allows for
redistribution, both commercial and non-commercial, as long as it is passed

Introduction to the Arduino    1-7

along unchanged and in its entirety, with credit given to the original creator.
•Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) — This is the

most restrictive of the Creative Commons licenses, only allowing others to
download a work and share them with others as long as they credit the creator.
Works released under this license cannot be modified in any way, nor can they
be used commercially.

The Arduino is released under the Creative Commons Attribution-
ShareAlike (CC BY-SA) license. You can freely use the original design files and
content from the Arduino website, www.arduino.cc, both commercially and
non-commercially, as long as credit is given to Arduino and any derivative work
is released under the same licensing. So, if by chance you do create something
that you would like to sell, you are free to do so, as long as you give the
appropriate credit to Arduino and follow the requirements outlined in the FAQ
on the Arduino website, as you may not be required to release your source code
if you follow specific guidelines. If you include libraries in your work, be sure
you use them within their licensing guidelines. The core Arduino libraries are
released under the LGPL and the Java-based IDE is released under the GPL.

In Conclusion
It is this Open Source licensing that has made the Arduino so popular

among hobbyists. You have the freedom to do just about anything you want and
there are many others developing code and libraries you can freely incorporate
in your code, which helps make developing on the Arduino so much fun. For
example, I know very little about Fast Fourier transforms, but there is a fully
functional library out there just waiting for me to come up with a way to use
it. That’s the beauty of the Arduino and Open Source. You don’t have to be a
programming genius to create fully functional projects as long as you have the
entire Open Source developer community to draw upon. And, when you do start
creating wonderful new things, remember to share them back to the community,
so that others following in your footsteps can benefit from your work and create
wonderful new things of their own.

References
Arduino — www.arduino.cc
Arduino Shield List — www.shieldlist.org
Atheros Communications — www.atheros.com
Atmel Corp — www.atmel.com
Creative Commons — http://creativecommons.org
GNU Operating System — www.gnu.org
Open Source Initiative — http://opensource.org
Texas Instruments — www.ti.com

