Appendix A

We shall designate two different event reference frames S and S^{\prime}, with two observers one in each reference frame. Joe ham sees the event (dB field) in his reference frame S . The other observer would see the event (dE field) in their reference frame S^{\prime}. The S ' reference frame moves with speed v with respect to frame S. The time is $t=0$ when the origin's of both O and O^{\prime} are at the same starting point, and the event occurs at some later t . Joe ham in S describes events at coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$) and the other observer describes events in their reference frame as ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, \mathrm{t}^{\prime}$).

Using the concept of free space moving charge, presented in "Why Antennas Radiate" (equation 3, with $\theta=90^{\circ}$) Joe ham would observe the B field moving at a velocity v to be:

1) $\quad B=\frac{v}{c^{2}} \gamma E^{\prime}$

Where $\theta=90^{\circ}$, the angle between the B field and the wire. The B field velocity v is already in the S reference frame.

Taking the time derivative of the B event in S , to both sides of the equation:
2) $\frac{d B}{d t}=\frac{d}{d t} \frac{v}{c^{2}} \gamma E^{\prime}$

Next using the product rule:
3) $\frac{d B}{d t}=\frac{\gamma E^{\prime}}{c^{2}} \frac{d v}{d t}+\frac{v}{c^{2}} \frac{d \gamma E^{\prime}}{d t}$

Assuming the velocity is constant (no acceleration), the first term in equation 3 goes away:
4) $\frac{d B}{d t}=\frac{\gamma E^{\prime}}{c^{2}} * 0+\frac{v}{c^{2}} \frac{d \gamma E}{d t}=\frac{v}{c^{2}} \frac{d \gamma E^{\prime}}{d t}$
5) $\frac{d B}{d t}=\frac{v}{c^{2}} \frac{d \gamma E^{\prime}}{d t}$

We could utilize the binomial expansion of $(1+x)^{r}$ for the gamma term, if we wanted to, where:

$$
(1+x)^{r}=1+r x+\frac{r(r-1)}{2!} x^{2}+\frac{r(r-1)(r-2)}{3!} x^{3}+\frac{r(r-1)(r-2)(r-3)}{4!} x^{4}+\ldots
$$

Where $x=-\frac{v^{2}}{c^{2}}$ and $r=-1 / 2$ so that:
7) $\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \cong 1+\frac{v^{2}}{2 c^{2}}+\frac{3 v^{4}}{8 c^{4}}+\frac{5 v^{6}}{16 c^{6}}+\frac{35 v^{8}}{128 c^{8}}+\ldots$

Since $v^{2} \ll c^{2}$ the second and remaining terms would go to zero, therefore we would arrive very close to $\gamma=1$. For the present time however, we will leave in the gamma term.

Substituting into equation 5 for the E^{\prime} field in terms of static charge $\left(E^{\prime}=q / 4 \pi \varepsilon r^{2}\right)$ in S^{\prime} we get:
8)

$$
\frac{d B}{d t}=\frac{v}{c^{2}} \frac{d}{d t}\left[\frac{\gamma q}{4 \pi \varepsilon_{0} r^{\prime 2}}\right]
$$

Moving $d t$, on the left side of the equation, over to the right side of the equation we can combine v and $d t$ to get $d l=v d t$, since v and $d t$ are both in S .
9) $\quad d B=\frac{1}{c^{2}} \frac{d}{d t}\left[\frac{\gamma q}{4 \pi \varepsilon_{0} r^{\prime 2}}\right] d l$

We know in the S^{\prime} reference frame that $d q=n q A d l$ '. But $d l^{\prime}=\gamma d l$. Where n is the number of charges in the differential segment volume $A d l$ ' or $d V^{\prime}$. We can move all of $d q$ or nqAdl' to the S reference frame by making a substitution and multiplying by gamma, $\mathrm{d} q=\gamma n q A d l:$

$$
d B=\frac{1}{\varepsilon_{0} c^{2}} \frac{\gamma}{d t} \frac{n q A d l}{4 \pi r^{2}} d l
$$

But $d l=v_{d} d t$ so:
11) $d B=\frac{1}{\varepsilon_{0} c^{2}} \frac{\gamma}{d t} \frac{n q A v d t}{4 \pi r^{2}} d l$

Now the $d t$ cancel since they are in S. Additionally knowing that:
$\mu_{0}=\frac{1}{\varepsilon_{0} c^{2}}$
We get:
12) $d B=\frac{\mu_{0} 2 n q A v_{d}}{4 \pi r^{2}} d l$

Lastly knowing that $I=n q A v_{d}$, we arrive at:
13) $d B=\frac{\gamma \mu_{0} \mathrm{Idl}}{4 \pi r^{\prime 2}}$

Now if we wanted to use the binomial approximation in equation 7:
$\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \cong 1+\frac{v^{2}}{2 c^{2}}+\frac{3 v^{4}}{8 c^{4}}+\frac{5 v^{6}}{16 c^{6}}+\frac{35 v^{8}}{128 c^{8}}+\ldots$
14) $d B=\frac{\mu_{0} \mathrm{Idl}}{4 \pi r^{\prime 2}}\left[1+\frac{v^{2}}{2 c^{2}}\right]$

But $\mathrm{v} \ll \mathrm{c}$ so we end up with the magnitude form of the Biot-Savart law, with $\theta=90^{\circ}$.
15) $d B=\frac{\mu_{0} \mathrm{Idl}}{4 \pi r^{2}}$

Note: Many Thanks to Dan Creveling for pointing out $d l^{\prime}=\gamma d l$ not $\gamma d l^{\prime}=d l$

