Measuring Characteristic Impedance of Coax Cable in the Shack

"The technique presented here is based on a well-known property of transmission lines (see John D. Kraus, *Electromagnetics*, 1953, pp. 433ff.)". This reference is the same as Table 10-3, John D. Kraus, *Electromagnetics, Third Edition*, 1984, p. 406. The earlier reference is out of print. We are referring to the equation in the third row and third column of Table 10-3, reproduced below.

Table 10-3 Input impedance of terminated transmission line†

Load condition	General case ($\alpha \neq 0$)	Lossless case ($\alpha = 0$)
Any value of load Z_L	$Z_x = Z_0 \frac{Z_L + Z_0 \tanh \gamma x}{Z_0 + Z_L \tanh \gamma x}$	$Z_x = Z_0 \frac{Z_L + jZ_0 \tan \beta x}{Z_0 + jZ_L \tan \beta x}$
Open-circuited line $(Z_L = \infty)$	$Z_x = Z_0 \coth \gamma x$	$Z_x = -jZ_0 \cot \beta x$
Short-circuited line $(Z_L = 0)$	$Z_x = Z_0 \tanh \gamma x$	$Z_x = jZ_0 \tan \beta x$

 $[\]dagger \gamma = \alpha + j\beta$, where $\alpha =$ attenuation constant in nepers per meter and $\beta = 2\pi/\lambda =$ phase constant in radians per meter, where λ is the wavelength.

Specifically, when length $x = \lambda/8$, then $\beta x = \pi/4$ (45 degrees), and $|Z_x| = Z_0$.

— Best regards, John Flood, K4DLX; k4dlx@bellsouth.net.

Send your short *QEX*Technical Note to the Editor, via e-mail to qex@arrl.org. We reserve the right to edit your letter for clarity, and to fit in the available page space. "*QEX* Technical Note" may also appear in other ARRL media. The publishers of *QEX* assume no responsibilities for statements made by correspondents.