
 QEX – January/February 2010 9

Cadet Thomas Dean, KB1JIJ

5 Mohegan Rd, Groton, CT 06340; thomas.dean@usma.edu

A Digital Frequency Hopping
Spread Spectrum Transmitter

What can you program an FPGA to do? A digital logic class
project leads to this FHSS transmitter.

1Notes appear on page 16

Software-defined radio is quickly trans-
forming the communications field. Software-
defined radio uses software to perform
functions such as modulation, demodula-
tion and filtering, all in the digital realm.
The advantage to this is that it allows for
systems to be built with fewer components
than a traditional analog radio architecture,
and it allows for an incredible amount of
flexibility within the system, even after it
has already been produced. There are sev-
eral common approaches to implementing
a software-defined system. One way that
most hams may be familiar with can be done
on a computer and converted to or from the
analog realm through either a sound card or
a peripheral such as a Universal Software
Radio Peripheral. It is also possible to do
the processing on a programmable chip such
as a field programmable gate array (FPGA)
or through the use of an application specific
integrated circuit (ASIC), microprocessors,
or DSP chips. In this article I would like to
present an example of a project that creates
waveforms by using only two components:
an FPGA and a video digital to analog con-
verter (DAC). This article will also present
an introduction to spread spectrum (SS) sys-
tems, which are not commonly seen on the
amateur bands.

Introduction
This was a project that I designed

for a digital logic class. The project was
required to be designed on the Altera DE2
Development and Education board, using
an Altera Cyclone II FPGA. The DE2 board
is designed to allow students to gain experi-
ence programming digital systems, minimiz-
ing the hassle of fabrication. The board is

also useful for prototyping systems before
production. This board contains many built
in I/O devices and interfaces, as well as on
board memory and displays. See Figure 1.
For my project, I chose to design a software-
defined frequency hopping spread spectrum
transmitter. The output of the board contains
a signal in the range of 24 kHz to 6.2 MHz.
This signal would have to be converted to
an amateur band to be used on the air by an
Amateur Radio operator. That is an opera-
tion that is possible, but somewhat difficult
to do. Rather than being presented as a fully
working project, this paper presents a dem-
onstration of the sort of system that could

be contained in a single chip and how it was
created.

The Cyclone II FPGA generates samples
of the waveform and then sends them to
an ADV7123 Digital to Analog Converter
(DAC) to create the IF output of the trans-
mitter. The data rate, frequency range and
hopping rate of the transmitter are easily
adjusted within the source code. It would
not be too difficult to program an interface
to allow the user to configure these values. I
used a 100 kilobit per second data rate with
a 400 kHz hopping rate. There are 16 pos-
sible code division multiple access (CDMA)
patterns associated with this design, each

Figure 1 — The Altera DE2 Development and Education Board.

10 QEX – January/February 2010

of which has 255 channels that are spaced
approximately 24 kHz apart. The total band-
width of the transmitter is 6.25 MHz.

I developed the transmitter portion of
this project, while my project partner, Cadet
Adam Royal worked on interfacing it with a
hex keypad over the expansion header and
the 2 × 16 digit LCD display on the DE2
board. The keypad allowed selection of the
CDMA sequence and the LCD displayed
the sequence number. In this article, I will
present the design and theory behind the
transmitter.

Frequency hopping spread spectrum
(FHSS) was chosen in part due to the rela-
tive simplicity of creating the waveform. In
addition, I chose a spread spectrum mode
to help me gain a better understanding of
spread spectrum systems, which are of great
importance in military and many commercial
communication systems.

Spread Spectrum Systems
Spread spectrum emissions are not com-

monly seen on the amateur bands; however,
they offer several advantages over traditional
narrowband modes. From the point of view of
military communications, they make it much
more difficult for a signal to be jammed. For
example, consider a typical 5 kHz FM voice
signal. This could be jammed by simply
transmitting on top of it. If the signal was
instead hopped over a bandwidth of 30 MHz,
it would become nearly impossible to jam
unless the jammer had knowledge of the
spreading pattern. Commonly used spread
spectrum modes in the military include the
Single Channel Ground-Airborne Radio
System (SINCGARS) and HAVEQUICK
system. The use of a spread spectrum system
for this purpose is often referred to as an elec-
tronic counter-counter measure (ECCM).

Spread spectrum systems are also of great
advantage outside of the military. They offer
resilience to fading and can often be hidden
below the noise floor. By spreading a sig-
nal across a large portion of the spectrum,
a communications system will have what is
known as a process gain. Process gain is the
ratio of the spread signal bandwidth to the
unspread (baseband) signal bandwidth, and
is usually expressed in decibels. For exam-
ple, if a 1 kHz signal is spread over a 100 kHz
bandwidth, the ratio will be 100, or a 20 dB
process gain. (For more information on pro-
cess gain, see http://en.wikipedia.org/wiki/
Process_gain.)

Depending on the amount of spreading,
a system can also gain additional rejection
of interference. SS systems can offer a way
for multiple users to send data over the same
set of frequencies, even though it is a large
frequency range. Users must simply choose
spreading codes that have low levels of cor-

relation to each other. This is referred to
as code division multiple access (CDMA).
Most protocols under IEEE 802.11 use
spread spectrum systems to allow multiple
users on the same frequency range. In addi-
tion, the Bluetooth protocol as well as many
cellular telephone networks and GPS sys-
tems employ a spread spectrum modulation
method.

Programming FGPAs
Before I get into the details of the transmit-

ter design, I will introduce the main compo-
nent of the design — the FPGA — for those
who aren’t familiar with it. Programming an
FGPA is slightly different from writing code
for a computer or microprocessor. An FPGA
is a very large array of logic cells. Each cell
contains a number of inputs and outputs,

and can be programmed to perform a certain
logic function. Cells can also function as
counters, adders, or in some cases multipli-
ers. Most FPGAs also have built in SDRAM
and sometimes incorporate PLLs or DSP
units into their design. When you write a pro-
gram for an FPGA, rather than defining a set
of instructions for a processor to follow, you
are describing how the cells within the FPGA
are connected.

FPGAs are programmed with a hardware
description language (HDL). This project
was coded using VHDL (Very High Speed
Integrated Circuit HDL), which is similar in
syntax to ADA. Programming an FPGA can
be very tricky at first. This may be especially
true for someone who is familiar with com-
puter programming. The main difference is
that your code is executed in parallel rather
than sequentially. Once the code is written,
it can be synthesized to the Register Transfer
Logic (RTL) which is a description of how
registers and logic elements are connected.
From this, the circuit’s actual wiring can
be derived. This is useful for purposes of
simulation, which can be used to determine
if your circuit will execute properly before it
is programmed. From here, the circuit is fit-
ted to the chip and complied into a line code
that can be programmed on the chip. This
is generally done using a program that is
provided by the chip manufacturer. The soft-
ware package used in this project is Quartus
II, a trial version of this package is freely

Figure 2 — Here is a simple block diagram of a frequency hopping spread spectrum
(FHSS) system.

Figure 3 — This is a simple block diagram of a linear sequence generator.

Sequence Number:	 Tap positions:
1		 8,4,3,2
2		 8,6,5,3
3		 8,6,5,2
4		 8,5,3,1
5		 8,6,5,1
6		 8,7,6,1
7		 8,7,6,5,2,1
8		 8,6,4,3,2,1

Figure 4 — This table shows the tap
positions for maximal codes.

 QEX – January/February 2010 11

available from Altera. The DE2 board is pro-
grammed from a computer USB port using a
JTAG interface. The programming files can
also be stored on non-volatile EEPROM,
which is loaded onto the FPGA each time it
is powered up.

Design Theory

Frequency Hopping Spread Spectrum
Communications

There are many different methods for
spreading data across a wide bandwidth.1
Two of the most common methods are direct
sequence spread spectrum (DSSS) and fre-
quency hopping spread spectrum (FHSS).
DSSS takes a signal and multiplies it by a
pseudorandom noise signal. As a result, the
signal resembles white noise and simultane-
ously occupies a large bandwidth. In con-
trast, FHSS systems use a pseudorandom
sequence (known to both the transmitter and
receiver) to change the carrier frequency.2 In
my transmitter, the frequency changes at a
rate faster than the data transmission. FHSS
is essentially a form of frequency shift key-
ing.

The data is added to the pseudorandom
sequence by an exclusive OR (XOR) digital
logic operation. Then the data can be recov-
ered by XORing the sequence again, since A
⊕ B ⊕ A = B. A block diagram of a typical
FHSS transmitter is shown in Figure 2.

Generating Pseudonoise
One component that is critical to design-

ing a spread spectrum system is the pseu-
dorandom code generator. The code that is
generated must be deterministic so that it can
be decoded by the receiver. Generally, the use
of a spread spectrum signal is not to protect
against eavesdropping; this is accomplished
more effectively through encryption. The
two important features that must be consid-
ered in the code are called cross-correlation
and autocorrelation.

Autocorrelation is a measure of similar-
ity between the code and a phase-shifted
version of itself. It can be defined as the
number of times that the values of a phase
shifted version of the code are equal to the
values of the original code. This property is
of extreme importance to our system, due to
its coherence. For a signal to be decoded, the
receiver must be able to synchronize its code
sequence to the transmitted code sequence
(a process referred to as correlation). If a
sequence has a high autocorrelation then it
may become difficult to determine the cor-
rect point to correlate the codes.

Another important property of the code
is cross-correlation. This property is very
similar to autocorrelation, but measures the
amount of correlation of one sequence to a
different sequence. This property is impor-
tant to our system if it is to allow for CDMA.
Two communicators may share a single set

of frequencies only if there is a low level
of correlation between the set of codes that
they use.

I first chose a linear code for our system.
A linear code can be generated by a shift reg-
ister with a configuration similar to the one
shown in Figure 3.

Consider a code that is generated by a
sequence generator that has n stages, then it
would have a length of 2n–1 (a value of zero
is not possible). Dixon defines a code to be a
“maximal sequence” if the following proper-
ties apply to this code:3

1) Every possible state exists at some
point.

2.) No values repeat themselves within
one period of length 2n–1.

3.) The number of ones in a sequence
equals the number of zeros in the sequence
plus one.

4.) The statistical distribution of ones and
zeros is well defined and always the same.

A maximal code would be the ideal code
to use for our system since it has the low-
est possible autocorrelation and is easy to
generate. Generally, the larger the number
of states in a system, the better. It will be dif-
ficult, however, to generate a waveform at a
precise frequency using strictly digital logic.
Therefore, it is best not to choose too long of
a sequence. A length of eight bits seemed like
a reasonable medium. There are sixteen pos-
sible sets of maximal codes that can be made
from an eight stage generator. The table in
Figure 4 shows half of these possible codes,
the remaining eight are the mirror images of
these codes.4 Figure 5 will clarify how these
sequences are defined.

This generator is a shift register that feeds
back into itself. With each clock cycle, the
bits are shifted to the right one register. The
register is tapped at various locations as
shown, which allows the values on the reg-
ister to be changed in a cyclic process with
a period of 255 clock cycles. Since this code
will be used to select frequencies, we will
want the output to be in parallel. Using the
values from each register at each clock cycle,
we will end up with 255 states, correspond-
ing to 255 different frequencies.

Each of the sixteen different possible
sequences will correspond to different chan-
nels that can be used in the CDMA scheme.
We are therefore interested in the cross-cor-
relation between each sequence, as this will
show how often the channels will interfere
with each other.

The table in Figure 6 shows an index of
cross-correlation between half of the codes,
generated in-phase with each other. It was
calculated by generating every possible code
in a Microsoft Excel spreadsheet, and then
comparing the values of the codes. The index
represents the number of times that the two

Figure 5 — This block diagram shows an 8-bit maximal linear code generator. The circles
with a plus inside represent 1 bit adders (with no carry out), but can also be considered as

exclusive OR (XOR) gates.

   1	 2	 3	 4	 5	 6	 7	 8

1	  -	 6	 7	 6	 5	 4	 4	 5
2   6	 -	 13	 6	 10	 4	 4	 7
3	   7	 13	 -	 5	 9	 4	 4	 6
4	   6	 6	 5	 -	 8	 6	 5	 6
5	   5	 10	 9	 8	 -	 8	 5	 10
6	   4	 4	 4	 6	 8	 -	 7	 5
7	   4	 4	 4	 5	 5	 7	 -	 6
8	   5	 7	 6	 6	 10	 5	 6	 -

Figure 6 — This table gives the cross-correlation values for 8-bit sequences.

12 QEX – January/February 2010

codes shared the same value. With the excep-
tion of approximately five occurrences, this
only occurred at the beginning and ending
of the codes.

This data only shows a very small portion
of the possible cross-correlation values since
it is very rare that two codes will be exactly in
phase. Studies have determined that a maxi-
mal sequence of length eight will overlap the
remaining fifteen other maximal sequences
between 31 and 95 times.5 While this may
not result in any gain in spectral efficiency,
it would still be possible to achieve error free
communication using this scheme with suf-
ficient forward error correction.

Convolutional Coding
The purpose of forward error correction

(FEC) is to add a level of redundancy to a
transmission to allow the receiver to correct
some errors.6 These errors can come from
many sources including thermal noise, jam-
mers or communicators on other channels.
There are many ways to implement this
redundancy. One form of forward error cor-
rection that is very simple to implement and
provides us with a relatively high coding gain
is convolutional coding. While this code is
very simple to encode, it is rather complicated
to decode. This can be accomplished through
what is known as a Viterbiti decoder;7 how-
ever, that is beyond the scope of this article
since this project simply focuses on the
transmitter. Convolutional codes are usually
specified by three parameters:

n = number of output bits
k = number of input bits
m = number of registers
Not all forms of convolutional code cre-

ate good codes. One commonly used form
of this code8 is (2,1,7), with tap positions
defined as:

P1: 1111001
P2: 1011011
This can be done with the encoder shown

in Figure 7.
This encoder is a shift register, similar

to the pseudonoise generator described ear-
lier. Instead of XORing bits and feeding
them back into the register, they are instead
passed as two separate lines. This provides
an amount of redundancy within the system.
In order to use the output of this encoder, it is
converted into an 8 bit parallel line at a lower
clock rate, where it can be XORed with the
pseudonoise bit for bit.

This simple coding technique can allow
signals that are up to 5 dB weaker to be
received with the same error rate.9 The disad-
vantage to using this coding technique is that
it doubles the amount of data that is sent. This
means that twice the energy is being sent by
the radio, resulting in a coding gain of 2 dB
(5 dB – 3 dB). It is also highly effective to add
Reed-Solomon coding before performing

convolutional coding. Since Reed-Solomon
coding is a form of block error correction,
these two forms of error correction comple-
ment each other very well and result in a
significant code gain. Reed-Solomon cod-
ing works by creating a polynomial out of
the data and then adding redundancy by
oversampling the polynomial. Creating a
Reed-Solomon encoder on the register level
is not as hard as it might seem, but the theory
behind how it is done lies in abstract algebra.
These two forms of error correction are used
together in most deep space and satellite
communications.10

Generating the waveform
After the pseudorandom code is modi-

Figure 7 — Here is a block diagram of a convolutional encoder.

Figure 8 — This waveform results from sampling the look up table once every 255 values.

fied by the data, we are left with a series of
eight bit values, which can be directly corre-
sponded with a frequency. Determining the
best way to digitally synthesize a wide range
of frequencies was perhaps the most difficult
aspect of this project. The initial method that
I investigated involved generating clock sig-
nals and then converting these to a sinusoidal
wave through tunable digital filters. This
method would be complex from the design
perspective, but very simple when it actu-
ally came to implementing in hardware. This
method has been used in the design of wide-
band CDMA systems before, and is referred
to as pulse shaping.11 Eventually I decided
not to use this method, and chose to use a

 QEX – January/February 2010 13

Figure 9 — Here, the signal resulting from sampling the look up table every 255 values is
superimposed on the ideal waveform.

Figure 10 — This is the spectral display of the waveform that results from sampling the look
up table once every 255 values.

Figure 11 — This is the final block diagram of the transmitter.

large look-up table to generate the wave,
once I discovered how easily both Quartus II
and the Cyclone II handle internal memory.

The DAC that is on the Altera DE2 board
uses a process known as zero-order hold to
convert a set of digital samples to a piecewise
analog function. For this project, samples
will be sent to the DAC at a rate of 50 MHz.
Each sample will be a ten bit value that cor-
responds to the amplitude of the resulting
waveform. Sine waves will be generated
by taking values from a look-up table. To
change the frequency, I change the number of
times that the table is sampled. For example,
if every other value of the table is taken, then
the resulting waveform will be twice the fre-
quency if all values had been sampled.

Look-up Table
The look-up table must have, at a mini-

mum, twice the number of possible fre-
quencies because of the Nyquist criteria.
Since there are 256 possible values for the
frequency, there must be a minimum of
512 values in the table. Since storage inside
the chip is not an issue, I chose to double
this to improve the quality of the waveform
generated. Then, because of the symmetry
of the sine wave, the number of entries can
be reduced to a quarter of a sine wave. This
results in 256 values in the table. The word
size within the look-up table must be equal
to 10, since we are using a 10-bit DAC. The
final amount of memory needed is 29 × 10 or
5,120 bits. A Perl script was found on-line to
automate the process of making this look-up
table.12 It came with VHDL code that could
be used to access the table to generate a sine
wave. The code had to be modified in order to
allow for the sampling interval of the table to
be modified with input. In addition, the code
used two’s-complement in order to make
the values of the wave signed. The code had
to be modified in order to make the values
unsigned.

Spectra
In order to determine the frequencies

that result from sampling our table we must
consider that the table will be accessed at a
rate of 50 MHz or 5×107 times per second.
If n is equal to the output of the modified
pseudonoise generator (a value from 1 to
255), then the resulting frequency will be:

() 75 10
2048

= × nf n
	

[Eq 1]

where 2048 is equal to the period of the
table. This means that the system will have
outputs between 24.41 kHz and 6.225 MHz.

When we sample the table at intervals
that are not factors of 2048, the resulting
waveform will not be purely sinusoidal.
Consider when the table is sampled at an
interval of 255. The resulting signal can be

14 QEX – January/February 2010

Figure12 — This display is the output of the pulse code modulator (PCM) generator, as given by the Active-HDL simulation.

Figure13 — The Active-HDL simulation output of the PCM generator tied to the maximum length code (MLC) generator.

expressed as:

	 [Eq 2]
255
1024

− in

e
π

	
where n is a positive integer. Figure 8

displays the waveform graphically. Figure
9 compares this signal to the desired wave-
form, Sin (255 π n / 1024).

It is evident that the waveform is simply
not sampled at values corresponding to peaks
of the wave. To ensure that this imperfec-
tion has no negative impact on the system, it
can be converted into the frequency domain
using a discrete Fourier transform. The spec-
trum of the wave is then equal to the square of
the transform, which is shown in Figure 10.

The desired signal is about 6 dB higher
than any unwanted products. While this is not
ideal, it should be small enough not to cause
unwanted effects on the receiver. The wave-
form generated at this frequency is in fact the
worst possible waveform. The amplitude of
the output signal in Figure 8 appears to show
a low beat frequency. Normally, the output
signal would be put though a reconstruction
filter to remove any alias products. If we fil-
tered out any alias products, we would be left
with a constant amplitude sine wave.

Imperfections in the Waveform
One issue that is presented when convert-

ing a digital signal to an analog is the result
of imaging occurring at higher frequencies,
as well as other imperfections that end up
in the resulting waveform. Due to its zero-
order sample-and-hold operation, a digital
to analog converter (DAC) will produce a

distortion in the output spectrum that fol-
lows the function sin(x) / x.13 At 80% of the
Nyquist frequency, this attenuation will be
around –12.6 dB.14 The maximum frequency
reached by the system is 25% of the Nyquist
frequency. While this may cause some roll-
off, it should not be large enough to have
a significant impact on the performance of
the system. The roll-off could be countered
by using a digital filter prior to the DAC to
counter the effects.15 Another major issue
in the resulting signal comes from aliasing
that occurs. Replicas of this signal will occur
about multiples of the sampling frequency.
In some cases, it is possible that these rep-
licas will occur within the radio passband.
Thanks to the sample-and-hold nature of the
DAC, aliases that fall close to multiples of
the sampling frequency will be attenuated;
generally, the greater the sampling frequency,
the smaller the amplitude of the aliases. One
additional form of error that will be present
in the waveform will be noise in the output
called glitch energy, which is caused by a
voltage error in the DAC. Analog smoothing
and low pass filters could be used at the out-
put of the DAC in order to improve the final
signal. This would help reduce all forms of
error mentioned above.

Interfacing with the DAC
The actual interface to the ADV7134V

DAC is very straightforward. All of the wir-
ing was already done on the DE2 board. All
that had to be done was to properly select
the output pins on the FPGA to drive the
chip. The DAC was designed to drive a VGA

monitor and therefore has separate DACs on
chip. The samples were sent to the red input
in this project. In order to get output from
the DAC, high signals had to be input to the
BLANK and SYNC. In addition, the DAC has
an output impedance of 75 Ω. Therefore
the signal had to be passed through an RF
transformer to match the impedance to the
commonly used 50 Ω output. The signal was
captured by connecting a VGA cable to the
VGA port on the board. I cut off the other end
of the cable and installed a BNC connector to
the red signal in the cable.

Final Block Diagram
The block diagram of the final system is

shown in Figure 11. The output is intended
to be the IF signal of a radio. Bands which
would be good choices would include the
70 cm Amateur band and the 2.4 GHz ISM
band.

Simulation and Test Plan
The component that created the digital

signal was first simulated on Active-HDL,
which is an FPGA design and simulation
tool. The resulting waveform from the
pulse code modulator (PCM) is shown in
Figure 12. You can see that the output values
increase and decrease in periodic fashion.

Next, the maximum length code (MLC)
generator was added to control the input of
the PCM generator. Figure 13 shows the
waveform from this simulation.

While this waveform seems chaotic,

 QEX – January/February 2010 15

you can see that it is functioning properly
by simply looking at the fourth line on the
graph, just below the two black lines (labeled
as Output [9] on the left edge of the graph)
and the bottom (State Out) line. The fourth
line represents the most significant bit of the
PCM. It clearly changes its period when the
bottom line, which represents the states from
the PCM generator, changes state.

The test bench code that was used was
identical in both of these simulations. What
made them different was that the MLC
Generator was connected on the second one.

The next step in the testing process was
to test the output of the VGA DAC. This test
served to ensure that all components of the
radio were working correctly. It is very dif-
ficult to test whether or not the forward error
correction is working without a working
receiver, due to the pseudorandom nature of
the transmitter.

Results
The waveforms that the DAC produced

exceeded my expectations. In the time
domain, the most evident distortion that
exists is caused by the sample-and-hold
nature of the DAC. This distortion increases
as the frequency of the output increases. In
addition, a small amount of glitch energy is
present, but this would not have a significant
impact on the system. Figure 14 shows the
output waveform at 480 kHz. Figure 15 is the
output waveform with the transmitter operat-
ing at 5.8 MHz.

Looking at the spectrum of the wave-
forms can give a little more insight into
the performance of the radio. Bandwidth
measurements may not be highly accurate
because the spectrum was created by having
a 200 million samples per second oscillo-
scope take fast Fourier transforms (FFT) of
the waveform. It should be sufficient, how-
ever, to provide a good idea of the function-
ing of the transmitter. Figure 16 shows the
66 kHz output in both time and frequency
domains.

Figure 17 shows perhaps the worst case
output of the radio. A product with signifi-
cant amplitude lies within the 6 MHz band-
width of the radio. The primary product is
1.36 MHz. The first major product that is
produced after that is 30 dB lower than the
intended product and at about three times
the original frequency. This is an alias of the
original signal. Figure 18 shows the spectrum
of the highest frequency generated by the
transmitter, at about 6.2 MHz.

Figure 19 shows a product that occurs
outside of the 6 MHz passband of the radio.
This image occurs at three times the funda-
mental frequency and is 20 dB lower than
the intended product. Since this lies outside
the passband of the radio, it would be easy to

Figure 15 — This oscilloscope photo shows the output waveform with the transmitter
operating at 5.8 MHz. Note that this should correspond to the “worst case” waveform, as

discussed in the text.

Figure 16 — Here is an oscilloscope photo of a 66 kHz wave and its corresponding
spectrum. The peak of the spectrum is over 60 dB greater than other products.

Figure14 — This oscilloscope photo shows the output waveform with the transmitter
operating at 480 kHz.

16 QEX – January/February 2010

Figure 19 — This oscilloscope display shows the transmitter operating at
4.16 MHz, with a 12 MHz image at –20 dB.

Figure 17 — This photo is of a 1.36 MHz output. The first unwanted product is
30 dB lower than the output of the fundamental frequency.

remove from the final signal.

Conclusion
This project was intended to explore how

to develop an FPGA-based transmitter, as
well as spread spectrum systems. The wave-
forms that we created show that it is very
possible to use simply an FPGA and a DAC
to create direct RF signals, or to serve as an
IF signal in a transmitter. The waveform that
was created here could easily be improved.
One significant improvement would be to
increase the clock speed within the system.
Altera claims that the DE2 board can be
driven as fast as 150 MHz. At this speed, tim-
ing would become a big issue. Increasing the
clock speed would allow a much faster sam-
ple rate, which would in turn reduce aliasing
and increase the maximum frequency that
can be created on the board. Additionally, the
size of the look-up table that was used could
be significantly increased since the Cyclone
II chip has just under 500 Kbits of internal
SDRAM. With both of these factors in mind,
it should be possible to directly synthesize
signals in the entire HF band on the DE2
board. Working with the DE2 board makes
experimentation very simple since no solder-
ing is required. Creating a receiver would be
slightly more difficult since the board does
not contain a high-speed ADC. It is possible
that one could be interfaced via the GPIO
expansion port. Alternatively, a narrowband
signal could be down-converted and then
processed with the audio ADC on the board.

Spread spectrum systems are not com-
monly heard within the amateur bands. This
is primarily because most of the advantages
of spread spectrum come from their resis-
tance to jamming and their stealth nature.
Neither of these are particular concerns in the
amateur community. FCC Rules do provide
for experimentation with spread spectrum in
the 70 cm and shorter wavelength amateur
bands, however.

Tom Dean, KB1JIJ, has been licensed since
2003. He currently attends the United States
Military Academy at West Point where he is
studying electrical engineering. Tom serves
as the president of the Cadet Amateur Radio
Club, W2KGY. He has taught Amateur Radio
license classes and serves as the Liaison VE
for exam sessions given by the club. In his free
time, besides being on HF, he enjoys running,
swimming and reading. His academic interests
include software defined radio, satellite com-
munications and complex variable methods in
partial differential equations.

Notes
1Robert C. Dixon, Spread Spectrum Systems,

New York: Wiley International, 1984, p 71.
2Ibid, p 72.

Figure 18 — Here is the spectrum of the highest frequency generated by the
transmitter. The 3 dB bandwidth of this signal is on the order of 300 kHz.

 QEX – January/February 2010 17

3Ibid, p 58.
4Ibid, p 87.
5Anatol Tirkel, Cross-Correlation of

m-Sequences, Australia: Monash University.
6Mark Wilson, K1RO, ed, The ARRL

Handbook for Radio Communications,
Newington: ARRL, 2009, p 16.2.

7Charan Langton, ed, Coding and Decoding
with Convolutional Codes, Complextoreal,
1999.

8Ibid.
9Chip Flemming, A Tutorial on Convolutional

Coding with Viterbiti Decoding, Spectrum
Applications, 2006. Accessed from: home.
netcom.com/~chip.f/viterbi/tutorial.html.

10Intel Corporation. Intel ECC Application
Note 108, San Jose: Intel, 1999.

11George Aliftiras, CDMA Waveform
Generation for Digital Radios, Filtronic
Sigtek, p 1.

12Synthesizable Sine Wave Generator,
Doulos. Accessed from: www.doulos.com/
knowhow/vhdl_designers_guide/models/
sine_wave_generator/.

13George Aliftiras, CDMA Waveform
Generation for Digital Radios, Filtronic
Sigtek, p 4.

14Ken Yang, Flatten DAC frequency response,
Maxim Integrated Products, 2006. Accessed
from: www.edn.com/article/CA6321533.
html.

15George Aliftiras, CDMA Waveform
Generation for Digital Radios, Filtronic
Sigtek, p 4.

