
Mini_CT Pascal Code Functions

©2013 Veikko Kanto

Why change the program? Perhaps you need to find a value that is not present such as RMS voltage or

time in the XT display mode. You want to add a script command to set the cursor index to the peak

current value. You don’t need a curve tracer but want to build a low frequency oscilloscope or make a

photo spectrometer.

This document is by no means comprehensive nor is the code much to be proud of. After all it’s a hobby,

not a job. My style is to use global variables as much as possible. You will find the functions and

procedures have access to all global variables needed for their operation. A minimal number of

parameters are passed to the procedures.

To start programming, open Project1.dpr. Almost all the program uses Form1 and UnitCT. The other

forms and units are for multiple plot displays, pop up messages and about information. When the

project compiles, the executable is project1.exe.

Procedures and functions are defined in use order. This eliminates the need for forward declarations. To

use procedures and functions, place your code at the end of the program.

The program is a single process interrupted by Timers or by Form Component events. Timers are used

extensively to perform background sequential operations. Timer tmrchstatus handles receipt of serial

data. In addition, it scales received data and plots it to the screen. Other timers handle continuous

acquisition and script program commands.

It is most likely you will want to manipulate data to extract information. For insight into where data is

stored and how to locate it, look at the doredraw() function description.

Timer Procedures:

1. tmrchkstatus

a. Period 2ms

b. Always enabled

c. Calls checkforbyte()

i. Check for received serial data charcters

1. Save in character array cline[]

2. If no characters present, exit

ii. On end of record char(129), process cline[]

1. Extract 14-bit integer values for Collector Voltage and Current

2. Save values in integer array addata[sample, type]

a. sample = data point 0 to 255

b. type 0: Collector-V, type 1: Collector-I, type 2: Base-V, type 3:

Base-I

3. Call fixdata()

a. Offset and scale Collector addata[] and save in V[] array

b. Obtain Base voltage and Base current from Form settings then

save values in V[] array

c. Extract switch setting data from end of record and update Form

d. If selected on Form, Filter and Average data in V[] array

e. If acquisition, filtering and averaging are completed, copy V[]

array to traces[] array

f. Call doredraw()

i. Plot data from selected traces[] array on the Form

4. If there are less than 256 data points, then convert the data to a DC

measurement

a. Sum and average data to generate DC values

b. Update DC values on Form

c. If calnum != 0, use DC values for calibration of gains and offsets

2. timer7

a. Triggers Run Sweep event to implement continuous trace acquisition

b. Enabled when Live is checked

c. Period is equal to delay1 or delay2 values set by Rate menu

i. delay1 is for the AC sweep mode of acquisition: 200ms, 100ms, 25ms

ii. delay2 is for the slow sweep mode of acquisition: 400ms, 200ms, 25ms

3. timer5

a. Period is set by Script Control Step Time of 10ms, 100ms or 1000ms

b. Enabled by Run Script button event. Also causes timer6 to become disabled

c. Processes Script program one line per pass

i. Increments program line pointer each pass

ii. Exits upon stop script command

d. Coding new script commands:

i. The command string is all lower case followed by a space

1. The interpreter converts all program code to lower case

ii. An integer value may follow the command string

1. Extract the integer value with a copy function

a. i is the pointer to the program line string position matching the

command

b. s contains the script program string and is parameter 1

c. n is the length of the program line

d. Use i+length for parameter 2

i. length(‘setcollector ‘) = 13

ii. There is a space after the r

iii. Parameter 2 = i+13

e. Use n-i-(length-1) for parameter 3

i. length(‘setcollector ‘)-1 = 12

ii. Parameter 3 = n-i-12

iii. In this example, the spin edit box CollectorV value is changed to the integer

following the command string ‘setcollector ‘ and the DAC0 voltage is updated.

1. A procedure call to dosectcollector changes the collector voltage.

2. To set the collector to 5V, the script command is:

 setcollector 500

3. Use unique names for the command strings

Example Pascal Code for adding a Script command:

i := Pos('setcollector ', s); // Test for the command string setcollector

 if i = 1 then begin // If it matches at the beginning, process it

 es := 'Numeric Input Error'; //es is the error string

 form1.CollectorV.value := strtoint(trim(copy(s,i+13,n-i-12))); //extract integer

 dosetcollector; //call the procedure to set the collector voltage

 exit; //exit the timer5 procedure, all done

end;

4. timer6

a. Queries switch settings to update Form when Live mode is inactive

b. Period 500ms

c. Enabled except when running Script program or disabled by menu

Display Procedures and Functions:

1. doredraw()

a. Plots traces onto form

i. Single Trace

ii. Multiple Traces

iii. Comparison Traces

iv. Sets Trace color depending on plot type

b. Uses Form control variables to identify trace to plot

i. Part traces

1. Form1.SweepStep.Value = pin+

2. Form1.TraceNumber.Value = pin-

3. Form1.SpinSweepSteps .Value

ii. Compare traces

1. Form1.spinPC.Value = pin+

2. Form1.spinNC.Value = pin-

c. Loads data into V[] array from traces[] array

i. Locates trace at pin+ and pin- using function hash()

1. index = hash(trace, pin-, pin+, RW)

a. trace = 0 part, trace = 1 compare

i. Part is the normal trace storage for measurement

ii. Compare is secondary storage for comparing devices

b. pin+ = Collector positive pin number

c. pin- = Collector negative (GND) pin number

d. RW = 0 locate trace, RW = 1 save trace

e. index = Integer pointer to trace data in traces[] array

f. hash table is stored in pins[trace, index, pin] array

i. trace = 0 part, trace = 1 compare

ii. index = Integer pointer to trace data in traces[] array

iii. pin = 0 array location for pin+ number

iv. pin = 1 array location for pin- number

2. Single Array V[sample, type]

a. Holds calibrated data

b. Is used for trace plotting

i. Place new data in this array to plot your own values

c. sample = data point 0 to 255

d. type = 0: Collector-V, type = 1: Collector-I, type = 2: Base-V,

type = 3: Base-I

3. Single Array traces[trace, index, sample, type]

a. Storage array for part traces and compare traces

b. trace = 0 part, trace = 1 compare

i. Part is the normal trace storage for measurement

ii. Compare is secondary storage for comparing devices

c. index = Integer pointer obtained from hash() function

d. sample = data point 0 to 255

e. type = 0: Collector-V, type = 1: Collector-I, type = 2: Base-V,

type = 3: Base-I

d. Calls procedure plotdata(), after each trace is loaded into array V[]

e. Calls procedure paintdib() to put plot on form

i. Uses myimage

1. 24 bit color

2. 513x513 pixels

2. Plotdata()

a. Generates BitMap image myimage

i. Makes screen reticule if flagmulti = false.

1. flagmulti = true suppressed reticule overwrite to allow multiple trace

plots

ii. Plots V-I data or V-t, I-t data

1. PlotType radio button determines XY or XT plot

2. Uses Form parameters to scale and offset plots

a. UpDownVO and UpDownIO spin buttons set the number of

Voffset and Ioffset divisions

b. SpinVolts and SpinMA buttons set vperdiv and iperdiv plot

scales

3. Places optional cursor on trace plot

a. The SamplePoint spin edit value selects V[sample, 0] voltage

and V[sample, 1] current values for screen placement

iii. Places text on plot

1. Base step information

a. V[0,2] is the Base voltage step value

b. V[0,3] is the Base current step value

2. Trace information

a. Plot Scaling and Offset values

b. Cursor voltage and current

c. Trace pin+ and pin- numbers

d. Serial Number

e. Calculated Parameters

Example Pascal Code to assign data to V[] array then plot it:

//On Form1, make control ButtonExample property visible equal to true

procedure TForm1.ButtonExampleClick(Sender: TObject);
var

 j, i : integer;

begin

 flagmulti := false; // Force drawing of reticule

 plotcolor := $00a700; // Initial plot color is green

 for j := 0 to maxpoints-1 do begin // save the data to a trace plot array

 v[j,1] := 10.0*sin(j*0.05);

 v[j,2] := 0.01*cos(j*0.2+ 0.75);

 v[j,3] := 0;

 v[j,4] := 0;

 end;

 i := hash(0,form1.TraceNumber.value,form1.SweepStep.value,1); //find a table entry

 if i <> -1 then begin

 pins[0,i,0] := form1.TraceNumber.value; //Update pin numbers

 pins[0,i,1] := form1.SweepStep.value;

 for j := 0 to maxpoints-1 do begin // save the data to a traces[] array

 traces[0,i,j,1] := v[j,1]; //Image is not persistent unless saved to traces[] array

 traces[0,i,j,2] := v[j,2];

 traces[0,i,j,3] := v[j,3];

 traces[0,i,j,4] := v[j,4];

 end;

 end;

 plotdata; //generate the graph

 paintdib; //paint graph on the Form

end;

Control and Acquisition Procedures:

1. DoRunSweep()

a. Runs a trace sweep acquisition

b. If sweeptype radio itemindex = 0, run a “SWP0256” command

c. If sweeptype radio itemindex = 1, run a “MEA0256” command

2. DoSetCollector()

a. Converts the CollectorV spin edit value to a DAC integer

b. Sends command “DA0” + 4-digit string of DAC integer

3. DoSetBaseV()

a. Converts the BaseVolts spin edit value to a DAC integer

b. Sends command “DA1” + 4-digit string of DAC integer

4. DoSetBaseI()

a. Converts the BaseuA spin edit value to a DAC integer

b. Sends command “DA1” + 4-digit string of DAC integer

5. DoSetValues()

a. Converts the CollectorStart spin edit value to a DAC integer

b. Sends command “STA” + 4-digit string of DAC integer

c. Converts the CollectorStep spin edit value to a DAC integer

d. Sends command “STP” + 4-digit string of DAC integer

6. DoReadVoltages(N)

a. 1 <=N <= 250

b. Does a DC measurement read returning N values that are averaged to a single

measurement point

c. Sends command “DCM” + 4-digit string of N integer

7. SetInteger(‘c1’, ‘c2’, ‘c3’, N)

a. Sends three character command string c1+c2+c3

b. Followed by 4-digit string of integer N

