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The Case of Declining Beverage-on-Ground Performance 

Rudy Severns, N6LF 

PO Box 589, Cottage Grove, OR, 97424; n6lf@arrl.net. 

Detailed modeling and measurements that validate the use of NEC help explain why over the course of two winter 

seasons the performance of the Beverage on the Ground (BOG) antenna dropped off dramatically as the antenna 

slowly sank into the ground.  

 

 In midsummer of 2013 I placed a 450 foot length of insulated wire in my pasture configured as a 

Beverage-on-the-Ground (BOG) receiving antenna. At the same time I erected a terminated loop 

receiving antenna — a triangle, 70 feet high by 30 feet on the base. I already had a 30 foot vertical 

working as a non-directional E-probe with an amplifier. Over the last 18 months I’ve been decoding 

WSPR transmissions — which provide S/N estimates — and comparing reports between the antennas in 

an attempt to quantify their relative performances.  

 Initially the BOG and the loop were clearly superior to the vertical, and throughout the 18 months 

the loop performance was very consistent. The BOG worked well at first. However, over time and 

especially during the two intervening winter wet seasons, I noticed the BOG signal amplitudes dropping 

off significantly (-15 dB) and the S/N improvement dropped to no better than the vertical. With the 

coming of the last summer’s dry season the BOG improved somewhat but never really came back. This 

winter the BOG was not very useful. I checked the connections, feed lines and all associated hardware 

carefully but found no problems, so this rather radical decline in performance was a mystery! 

 Recently, I received an email from Al Christman, K3LC, relaying a question he received from 

Carl Luetzelschwab, K9LA, regarding the reliability of NEC modeling for wires close to, or on the 

surface, or buried in the soil. There has been some skepticism regarding the validity of NEC modeling in 

these situations. Over the years I’ve often compared my modeling predictions with finished antennas and 

generally found very good correlation. However, while modeling E-and H-fields for verticals close to the 

soil-air interface I saw some anomalies in the H-field calculations when using NEC4.1, which uses the 

GN2 ground code.  

These problems have long been recognized but recently Jerry Burke modified the NEC code to NEC4.2 

upgrading to GN3, improving modeling of the ground interaction. I’ve had a chance to try GN3 

(incorporated into NEC4.2) and it did not generate the anomalies I’d seen with GN2. This prompted me to 

ask, “does NEC4.2 model antennas with wires close to and/or buried in soil well enough to explain why 
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the performance of my BOG was declining so badly?” To answer that question I felt I had to validate 

NEC4.2 modeling to my satisfaction before I could confidently move on to my BOG problem. 

 I decided to perform a series of field experiments to see how well NEC predictions would 

correlate with actual antennas having wires parallel to the soil at low heights or buried in the soil. I also 

wanted to investigate an antenna that employed a ground rod. Since my interest is in antennas for 80 m 

and 160 m, I used test frequencies ranging from 1 to 4 MHz. By no means do my examples cover all 

possibilities but they are representative. Here is what I found. 

Modeling Software and Instrumentation 

 NEC solves for the currents on the wires. From these currents both the feed-point impedance and 

the radiation pattern are calculated. If the impedances from the NEC model agree with the values 

measured on the actual antenna over a wide range of frequencies you can be reasonably sure the modeling 

is reliable. In the case of my BOG it would also be helpful to see if NEC4.2 would predict the current 

distribution along the wire at a given frequency, for example 1.83 MHz. 

 For the modeling part of this experiment I used EZNEC Pro4 v6, courtesy of Roy Lewallen, 

W7EL.1 That version of EZNEC uses NEC 4.2. I also used the latest version of AutoEZ from Dan 

Maguire, AC6LA.2 AutoEZ is an Excel® spread sheet with macros that automate a wide range of 

modeling tasks using EZNEC as the engine. For impedance measurements I used a vector network 

analyzer (VNA), either the VNA2180 from W5BIG or a homebrew N2PK VNA. I’ve made it a point to 

display the raw measurements without any “corrections” to the data points. That is why you can see noise 

present on the graphs of VNA measurements at frequencies associated with my local broadcast stations 

and, in one case, coupling to nearby verticals. The soil electrical characteristics were calculated at the 

same frequencies as the impedance measurements. This ground data was then inserted into the model. 

AutoEZ makes it easy to blend this kind of data into a model. 

The following discussion addresses only NEC4.2, since NEC2 does not allow buried wires and does not 

do a very good job when the wires are close to ground. It is very possible that GN3 was not required for 

all the comparisons. NEC4.1 might very well have returned very similar results. I didn’t repeat the 

modeling with NEC4.1 (GN2). 

Soil Surface 

 First let’s clarify the nature of the ground surface. When modeling, we assume the air-ground 

interface is a distinct line with the properties of air above it and the soil below it. NEC in its present form 

cannot model a “transition” zone. It’s important to recognize that with real antennas the soil-air interface 

is not smooth nor sharply defined. Unless carefully reworked, the soil surface will be lumpy with varying 

characteristics both vertically and horizontally. As we’ll see later, the characteristics of an antenna close 
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to, or buried in, the soil are very sensitive to soil electrical characteristics so this “lumpiness” in the 

surface makes it difficult to get good correlation when modeling wires that are between one inch above 

and one inch below the surface. In effect there is no distinct soil-surface interface. What we do have in 

reality is a transition zone from air to soil, which we can model only approximately.  

For example, in a pasture as you get closer to ground, first there is grass, then there is the body of grass 

plant, then there is the root system, and finally you reach actual soil. Even then you’re still not home free. 

The moisture in the top few inches of soil varies quickly with rain and subsequent drying. If the antenna is 

installed in a forest, initially a surface wire will be lying on top of leaves or needles in various stages of 

decay, and other woody debris. In summer time this surface may be quite dry, so in effect the antenna is 

at a height of a few inches.  

 My experience, and that of others, as well as the modeling, show that this can provide a very 

good receiving antenna. However, with the arrival of fall, leaves and needles will drop down on the wire, 

burying it to some degree. Also it’s likely that the forest floor will be quite wet or even frozen.  

 I had an interesting exchange with Don Johnson, N4DJ, about his work with BOG antennas in a 

forest. His results were very good, and he did not notice the severe degradation in performance that I had 

experienced. It appears that the degradation over time is highly variable and specific to a particular 

installation, so we want to be careful about drawing general conclusions. If you live in the desert you may 

be able to place a wire directly on the soil surface and have that remain relatively unchanged for an 

extended period of time.  

I think it is important to reiterate that modeling a wire lying on the ground surface is a special problem. 

My test antennas #1, #2, and #3 were modeled with the assumption that the air-soil interface was distinct, 

not fuzzy, and that seems to have worked well. In my case, the BOG wire (test antenna #4) was placed on 

the surface of a pasture in the summer time when the grass had been mowed and was very dry. The soil 

also was very dry, so the wire was effectively 1 to 3 inches above the soil. But over the period of 18 

months the wire was swallowed up by the weeds, and by this winter it was buried in wet sod and tall 

grass. There really is no way to model this transition layer between air and the actual soil. What I’ve done 

is to compare a BOG antenna one inch above the soil to a BOG antenna one inch below the soil. There 

was good agreement between modeling and experiment. 

Test antenna #1 

 The first test antenna was a center-fed dipole. I chose a length of 300 feet because that included 

both series (odd half-wave multiples) and parallel (even half-wave multiples) resonances within the test 

frequency range. This presented a wide range of impedance values at the feed point, from a few tens of 

ohms to several thousand ohms. I varied the height above ground from 48 inches down to 1 inch in the 

sequence 48, 24, 12, 6, 3 and 1 inch. A common mode choke was used for isolation. The feed-point 
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impedance was measured with a VNA. The VNA calibration plane was directly at the antenna terminals. 

Soil electrical characteristics were measured concurrently. The details of the soil measurements are given 

in articles on soil electrical characterization. 3  

 Figure 1 shows a view along the length of test antenna #1. The #17 AWG aluminum electric 

fence wire was supported on 5-foot fiberglass wands with plastic wire clips. The clips were moved up and 

down to adjust wire height. The wands were spaced 10 to 20 feet apart and the wire was anchored at the 

ends to steel fence posts that were more than 6 feet away from the ends of the wire. Multiple support 

points and significant wire tension kept the droop to less than a quarter of an inch. I used high quality 

insulators and non-conducting Dacron line at the wire ends, and a Budwig center connecter. Figure 2 

shows the Budwig connector and common-mode choke at the feed point. 

 Another view of the center connector is shown in Figure 3, which also shows a measurement of 

the shunt capacitance (Cp) across the feed point introduced by the Budwig and the cable shield. The center 

wire of the cable connecting the fitting to the choke was open-circuited so only the capacitance of the 

fitting and the outside of the cable was included. Shunt capacitance Cp turned out to be about 6 pF, which 

was added to the model as a capacitive load in parallel with the source. In the 1 to 4 MHz range a shunt 

capacitance of 6 pF would not seem to matter but, as seen in Figure 4, when added to the model, 

significantly improved the correlation around the high impedance point.  

 Figure 5 shows the measured impedance of the common mode choke. While the choke 

impedance is more than 2 k, at some frequencies the feed-point impedance was even higher. For this 

reason the graphs show some reduction in measured compared to predicted impedance at the high 

impedance points. 

 The measured and computed comparisons of test antenna #1 resistance and reactance are shown 

in Figures 6 through 17 for heights of 48, 24, 12, 6, 3 and 1 inch above the soil. Note that there are 

glitches in the VNA measured data around 1.2 to 1.6 MHz on many of the figures. These correspond to 

local radio station transmissions. These spurious signals are obvious and can be ignored. 

 NEC4.2 based calculations appear to do a very good job of matching measurements down to 1 

inch above ground. I didn’t go lower because the soil surface had variations of more than a half inch, and 

despite weed-whacking closely, there were still grass lumps under the antenna. The zero reactance 

measurements of Figure 18 show how the resonant frequencies, both series (odd half wave multiple) and 

parallel (even half wave multiple), vary with height. 

Figure 18 illustrates the important point that the resonant frequency goes down in frequency as the 

antenna comes closer to ground, and that the change is relatively slow until you get to very low heights 

(less than 3 inches) at which point the change is rapid. 
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Test antenna #2 

 The second test antenna was a 40 foot dipole using #26 AWG insulated wire buried 1 inch below 

ground surface. I wanted to have both series and parallel resonances like I had with the 300 foot dipole 

but that wasn’t possible over the 1 to 4 MHz range so I settled for a 40 foot length that was resonant at 

about 2.5 MHz. The length of test antenna #2 is 1/9 the length test antenna #1 but we still have a series 

resonance frequency comparable to the 300 foot above-ground dipole. This observation reinforces the 

message in Figure 18, that placing the antenna close to or in the soil drastically and rapidly decreases the 

resonant frequency. As shown in Figure 19, I cut a slot in the soil with a lawn edger. I then inserted the 

antenna and backfilled the slot with compacted dirt. 

 After inserting the wire into the slot but before backfilling it, I measured the impedance. The 

result was very different from the NEC-based calculation for a buried antenna, and instead behaved as 

though the antenna were lying on the surface. However, as soon as I backfilled the soil slot and re-

measured the impedance, I obtained the results shown in Figures 20 and 21. The good agreement in 

Figures 20 and 21 between measurements and calculations indicates the NEC model provides reasonable 

predictions. 

 I tried both a 19-inch monopole probe and a 12-inch open wire line probe (OWL) to measure the 

soil characteristics.3,4,5 The monopole probe gives a good estimate of the average soil characteristics from 

the surface down to three feet or so. The OWL probe, on the other hand, measures a cylinder of soil just 

12 inches from the surface. Figures 22 and 23 illustrate the differences in measurements between the two 

probes in the same soil. 

 I felt the OWL data was more appropriate for a wire buried only 1 inch deep. OWL measured 

values yielded better correlation with modeled values.  

 Because soil measurements are not perfect, I wondered just how sensitive the model was to 

variations in the soil characteristics. I reran the VNA measurement of the buried dipole nine days later 

after it had rained. A comparison between the two measurements is shown in Figures 24 and 25. After the 

rain, soil moisture was higher, which increased significantly in both conductivity and permittivity, and 

lowered the resonant frequency from 2.4 to 2.2 MHz. 

We can get a feeling for the sensitivity of the modeling to variations in soil electrical characteristics by 

taking a soil measurement and varying the values 10% as shown in Figure 26. This example illustrates 

why good soil measurements are needed to get reasonable correlation, at least for antennas with wires 

close to or buried in soil.  

 The sensitivity of modeled resistance calculations is shown in Figure 27 for variations of the 

insulation relative dielectric constant, and in Figure 28 for insulation thickness. The choices for insulation 

thicknesses in Figure 28 were not random. The wire used for the antenna had an insulation thickness of 



QEX-0716 Severns QST-in-Depth Page 6 

0.008 inches marked on the reel label, however my actual measurements, using a micrometer, of the total 

outer diameter minus the wire diameter revealed that the actual thickness was 0.009 inches. Using the 

measured value in the model improved the correlation as shown in Figure 28. Figures 24 though 28 

illustrate the sensitivity of resistance and reactance of buried wires to different variables, such as the 

effect of rain, ground constants, insulation permittivity and insulation thickness. 

Test antenna #3 

 I wanted to test an antenna that incorporated a ground rod, and one that would have a radiation 

resistance comparable to the loss resistance associated with a rod to get a feeling of how well ground rods 

are modeled. I have a pair of tall support poles so I simply suspended a 77 foot length of #26 AWG 

insulated wire from the midpoint of a Dacron line stretched between the poles directly over the ground 

stake shown in Figure 29. One of the rules for NEC modeling is that a source cannot be on a segment 

directly adjacent to a wire-size discontinuity. In this case that would be the ground stake to the #26 AWG 

wire connection. In the model, the source must be in the center of three consecutive segments of the same 

length and wire diameter. To meet those requirements I used 3-inch segments in the model and placed the 

source at the center of the second segment (at 4.5 inches), which matched the actual feed point 

configuration of the test antenna. Using concurrent soil measurements, I got the results shown in Figures 

30 for the resistance, and Figure 31 for the reactance. 

 The overall agreement between measurements and calculations is good, and the resonant 

frequency is particularly close. The noise introduced into the VNA from local AM broadcast stations 

picked up by the tall vertical is also obvious. There were other antennas and a metal building within 150 

feet of the test vertical, which also introduced some spurious resonances. Unfortunately there’s not much 

I can about the local AM signals. Their bandwidths are all narrow so I fit a 3rd order polynomial trend 

line (R2=0.987) into the VNA data, which pretty well filtered out the noise. The NEC calculation is a 

good fit to the trend line.  

Test antenna #4 

 This entire exercise had been prompted by a mystery concerning the declining performance of a 

BOG, and by questions regarding the validity of NEC modeling of BOGs so, appropriately, my final test 

antenna was a BOG.  

 Using the 450’ BOG already in place I measured the feed point impedance from 400 kHz to 

4.4 MHz. I also measured the current amplitude and phase along the wire at 1.83 MHz. I added the 

current measurements as a further confirmation of the NEC modeling predictions, that is, the rapid 

exponential decrease in current with distance along the wire. Figures 32 shows the BOG in relation to a 

measuring tape alongside the wire to locate the sampling points. Figure 33 shows the instrumentation 
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position. Figure 34 shows the probe for picking up the antenna currents. Figure 35 shows the excitation 

point at the base, and a current sampling example. For the current measurements, the VNA was in the 

transmission mode where the antenna was excited at the feed point and the transmission gain (S21) was 

sampled at several points along the wire using the oscilloscope current probe shown in Figure 34. S21 is a 

surrogate for the current.  

The antenna was modeled one inch below the soil. Modeling results and comparisons to the VNA 

measurements are shown in Figure 36 (resistance), Figure 37 (reactance) and Figure 38 (current 

amplitude). The impedance and current distribution graphs show good correlation between NEC and the 

real antenna despite the uncertainties in the ground surface transition zone. 

The rapid exponential decay of the antenna current was a surprise, but the field measurements confirmed 

it. This goes a long way towards explaining why the antenna performance was so poor. Functionally it 

behaves more like a short radial than an antenna! Disconnecting the ground rod at the far end had no 

effect on either the current distribution or feed point impedance, which was no surprise since there was 

very little current at the far end of the antenna. 

Next, I modeled the BOG with the antenna wire one inch above and one inch below the soil to 

approximately represent the changes from the time it was first installed to the present. The radiation 

patterns are compared in Figure 39. 

 I think antenna patterns of Figure 39 solves the initial mystery! The larger pattern with receive 

directivity factor (RDF) of 12 dB and peak gain Gp of -21.47 dB represents the initial condition of the 

antenna. The smaller pattern with an RDF of 6 dB and Gp of -37.4 dB is the present condition of the 

BOG. These patterns make it clear just how severely the performance was declining as the BOG 

gradually sank into the sod and soil through two winters. At the time of the measurements spring had 

arrived and the grass was growing rapidly. The pattern differences shown in Figure 39 agree well with 

S/N comparisons made over the past 18 months. 

Insulated wire 

 One of the small mysteries was the observation that placing the dipole loosely in the ground slot 

— which was quite narrow — without packing it with soil had much less affect on the antenna 

impedances than when the soil was packed around it. One way to explore this is to model a buried dipole 

as if it were inside a hollow pipe. We can do this with NEC by setting the insulation parameters =0 and 

r=1, that is, air insulation. We can then vary the radius of the insulation from 0.001 to 3 inches as shown 

in Figure 40. 

 What we see is that even a very thin layer of air around the wire will rapidly increase the resonant 

frequency. In effect, laying test antenna #2 directly into the soil slot resulted in a layer of air around the 

wire except at a few points where it was resting on the soil. This also affects test antenna #4, the BOG. 
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The vegetation had grown up gradually around the wire so that it was embedded in the weeds and sod 

with very little air gap. The same wire BOG centered within a small diameter plastic pipe would behave 

quite differently. Buried Beverages in plastic pipes?  

Conclusions 

 In the four examples, correlation between measurement and modeling was excellent. These do 

not by any means represent all the possibilities but the antennas chosen cover a range of practical 

examples using very low or buried wires.  

 Based on this work I believe that if we use NEC4.2, and follow the NEC modeling guidelines 

closely, make sure the model is dimensionally as close as possible to the actual antenna, and make careful 

soil measurements, then NEC modeling will give reliable results. The practical limitations of NEC4.2 

modeling are not due to computational shortcomings in the NEC code. What limits us is our knowledge 

of the details of the actual antennas and the associated soil characteristics and our ability to replicate these 

in a model. 

 As a practical matter we can never be perfect, but modeling should get us close. I think we can 

use NEC to compare elevated radials and buried radials, both insulated and non-insulated, with reliable 

results.  

There are many other questions we can ask, like what happens when interlaced elevated radials are used 

in vertical arrays. I think that NEC should give reliable results. The results for Beverage antennas, both 

elevated and buried with resistor and ground rod terminations should also be reliable. 

 In the case of the BOG the news is bit ambiguous. NEC modeling demonstrates that the BOG 

antenna can work very well, and from my experience I agree. However, your results may vary. High 

conductivity soil, for example, may result in very low signal levels. If the BOG is slowly being covered 

by whatever grows around it or falls from the sky, you may experience significant degradation in 

performance over time. As always, buyer beware! 
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www.eznec.com. 

2AutoEZ automates use of EZNEC, see www.ac6la.com. 

3Rudy Severns, N6LF, “Experimental Determination of Ground System Performance for HF Verticals”, QEX, in seven 

parts, Jan/Feb 2009 pp 21-25 and pp 48-52, Mar/Apr 2009 pp 29-32, May/Jun 2009 pp 38-42, Jul/Aug 2009 pp 1-

3, Nov/Dec 2009 pp 19-24, Jan/Feb 2101 pp 18-19. 
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Figure 1 — Test antenna #1. 

 

 

 

 

Figure 2 — Center connector, common mode choke and 
feed point support.  

 

 

 

 

 

 

 

 

 

 

Figure 3 — Shunt capacitance measurement of the 
center fitting. 

 

 

 

Figure 4 — Modeling with and without Cp.  

 

 

 

Figure 5 — Measured impedance of the common mode 
choke. 
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Figure 6 — Resistance measurement at antenna height 
of 48 inches. 
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Figure 7 — Reactance measurement at antenna height 
of 48 inches. 

 

 

 

Figure 8 — Resistance measurement at antenna height 
of 24 inches.  

 

 

Figure 9 — Reactance measurement at antenna height 
of 24 inches. 

 

 

 

Figure 10 — Resistance measurement at antenna height 
of 12 inches. 

 

 

Figure 11 — Reactance measurement at antenna height 
of 12 inches. 
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Figure 12 — Resistance measurement at antenna height 
of 6 inches. 

 

 

Figure 13 — Reactance measurement at antenna height 
of 6 inches. 

 

 

Figure 14 — Resistance measurement at antenna height 
of 3 inches. 

 

 

Figure 15 — Reactance measurement at antenna height 
of 3 inches. 

 

 

Figure 16 — Resistance measurement at antenna height 
of 1 inches. 

 

 

Figure 17 — Reactance measurement at antenna height 
of 1 inches. 
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Figure 18 — Resonance variation with height for the 300 
foot dipole. 

 

Figure 19 — Cutting a slot in the soil for the 40 foot 
buried dipole.  

 

 

Figure 20 — Resistance measurement of the 40 foot 
dipole buried 1 inch. 

 

 

 

 

 

Figure 21 — Reactance measurement of the 40 foot 
dipole buried 1 inch. 

 

 

 

Figure 22 — Soil conductivity measurements. 

 

 

 

Figure 23 — Soil relative permittivity measurements.  
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Figure 24 — Resistance measurement of the buried 40 
foot dipole on March 7, and on March 16 following rain. 

 

 

 

Figure 25 — Reactance measurement of the buried 40 
foot dipole on March 7, and on March 16 following rain. 

 

 

 

Figure 26 — Variations in modeled resistance for 
different ground constants. 

 

 

 

Figure 27 — Effect of wire insulation relative dielectric 
constant. 

 

 

 

Figure 28 — Effect of insulation thickness. 

 

 

 

Figure 29 — Feed point and ground rod of test antenna 
#3. 
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Figure 30 — Measured and computed resistance of the 
77 foot vertical with a single ground stake. 

 

 

Figure 31 — Measured and computed reactance of the 
77 foot vertical with a single ground stake. 

 

 

Figure 32 — View of the BOG with measuring tape. 

 

 

Figure 33 — Instrumentation position. 

 

 

 

 

Figure 34 — Scope probe used for current pickup. 

 

 

 

 

Figure 35 — Base excitation and current sampling 
example. 
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Figure 36 — Measured and computed BOG resistance. 

 

 

 

Figure 37 — Measured and computed BOG reactance. 

 

 

 

Figure 38 — Measured and computed BOG current 
amplitude. 

 

 

 

Figure 39 — Computed elevation antenna patterns for 
the BOG one inch above and one inch below ground. 

 

 

 

Figure 40 — Resonance frequency in two different soils 
for different air insulation thickness. 
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