50 Years of Progress—A Report on
Amateur Radio

With Special Reference to the New Philosophy of Integers

BY LARSON E. RAPP, * W1OU

It is customary at the midpoint in a century to take inventory on progress, and it is a real pleasure when the field is amateur radio. While it is true that QST and other amateur journals have occasionally mentioned a few of the amateur contributions to the art of communication, the author has anticipated the need for a factual report that can be added to the similar works in other fields. The present paper is the result of 28 months of steady work, sifting the inconsequential from the significant and reducing the findings to definite argot.

Early in the work it was decided to confine the investigation to those problems peculiar to amateur radio and not duplicated in other communications fields as, for example, point-to-point, mobile, entertainment (including television and broadcasting), and diathermy. It was felt that such a report would show clearly the great strides made by radio amateurs, working silently in their basement workshops and attic laboratories. The work involved in preparing this paper was made difficult by the characteristic reluctance amateurs show in talking about their achievements, while quick to acclaim the work of a colleague, despite the low power and poor antenna location of said colleague. However, free-and-easy access was obtained to thousands of well-kept logbooks and other records, and many of the heuristic conclusions were reached only because this information was made available.

Amateur communication can best be studied by breaking it down into three parts which, for simplicity, will be called Part 1, Part 2, and Part 3. Other designations might be used, of course. These three parts will be found, upon close inspection, to be (1) the quality or "tone" of the signals involved, (2) the "readability" or Q factor of the signals, and (3) the "strength" of the signals. Let us examine them in detail.

Part 1—Tone

Early records clearly show that from the first days of amateur radio, at the turn of the century, there was a noticeable difference in the tones of signals emanating from different transmitters. This effect was marked enough to suggest to the early experimenters that the most logical system

* We are fortunate this month in being able to present this significant work by the accepted authority in the field. The original calculations have been checked by our editorial staff and confirmed, but they are omitted from this presentation in the interests of national security.

of amateur communication was simultaneous operation of many transmitters on the same frequency, or "wavelength" as it was known in those days, with the receiving operator skillfully utilizing the differences in tones to select aurally the desired signal. This system was found to work very well with one transmitter operating in any given area, or with one weak and one strong station, if the strong station was the desired one. This system was carried through into the middle '30s, with the accepted wavelengths, or "frequencies" as they had become known, being carefully selected to coincide with the amateur band limits, or "edges."

As interest grew in the "tone" of the signals, a scale was devised 1 to enable a receiving operator to report to the transmitting operator just what the tone of the signal was or should be. Cautiously named the "T" scale, it consisted of careful descriptions of the common types of signals in vogue at the time, numbered from 1 to 9 for easy identification. The records indicate that no amateur in the past 50 years has ever been compliant enough to stop short of perfection in the tone of his transmitter's signal, as is apparent by the sheer horror registered by an operator who receives a "T8" report, although by the accepted scale it is a legal signal and not far from perfect. It is rare indeed to hear a peddicular signal reported as "T7" or "T6," so great has been the technical progress of amateur radio. By checking back on transmitter designs, computing the transmitter waveform and modulation characteristics, and plotting these against tabulated reports recorded in logbooks, it is possible to reconstruct the entire picture. Fig. 1 is a plot of the progress in amateur tone reports, and no further comment


QST for
is necessary. Study it carefully — it is a glorious record of achievement.

**Part 2 — Readability**

The readability or "R" factor is a direct indication of the ease with which a signal can be copied, based on a scale of 1 to 5. When the scale was first introduced, it was not unusual to hear readability reports of "R3" given to signals masked by noise or interference. However, despite increasingly-crowded bands, the accepted and taken-for-granted report is "R5," which means "Perfectly readable." The report of "R4," defined as "Readable with practically no difficulty," is reserved only for rare occasions when the signal is completely smothered by interference. It is, however, a true report, because the receiving operator will always acknowledge one of these smothered Readability 4 transmissions with "R OK, solid, FB," and other popular expressions. To the average bystander, such operating skill is beyond all comprehension, and naturally he never bothers to ask the receiving operator what was copied so solidly. After 1

---

**Fig. 1** — A plot of the frequency of occurrence of tone reports plotted against time. World War II and changes in reporting methods and government regulations account for the discontinuities.

The steady growth of T9 (earlier "P.D.C.") reports is in sharp contrast to the rapid falling off and eventual disappearance of less complimentary reports.

---

all, there is nothing like respect for genius.

To the uninitiated, or newcomer to amateur radio, it is sometimes difficult to arrive at an exact readability report. There is no need for this if he follows one simple rule. The following equation, arrived at empirically after months of investigation, will give the correct report in every instance. For any given band and set of conditions, the readability report is given by

$$ R = 2.5 \left( \frac{2 - n}{f} \right) $$

where $n$ = number of signals on the channel, and $f$ = operating frequency in Mc.

$R$ is always given in the nearest whole number.

**Part 3 — Signal Strength**

Tabulation of the signal reports received by active stations during the past 50 years shows clearly the great advances that have been made. Despite no relaxing of the legal power limit by FCC and other licensing authorities, the average report has slowly climbed to its present exalted heights. Considering only the present "S" scale, based on values from 1 to 9, it is interesting to note that in the middle '30s it was not unusual for stations to carry on communication with "Strength 3" or "Strength 4" signals at each end of the circuit. Nowadays, however, through antenna developments and circuit refinements, the average level of signals is up around S7 or S8, with no change in the transmitter power.

As usual, the radiotelephone specialists, generally acknowledged to be more advanced than the so-called "c.w. men," have brought the improvement in efficiency to still greater heights. Most of their reports take the form of "20 db. over S9" ("S9" means "Extremely strong signals"), and some reports run up to 40 or 50 db. over S9, with preselector. The average non-amateur, with a little mathematics and engineering knowledge at his command, is hard put to explain a signal that has 100 to 300 times the field strength of an extremely strong signal, but such profound knowledge can only be acquired after many years in the field. It even has some of the c.w. men guessing, and studying antenna theory.

Another effect observed only by amateurs, but thoroughly attested to by their records, is the "QSL" or "DXCC" effect. To the layman, this can be stated simply as being "the increased strength a signal has when it originates from a country where there are relatively few amateurs." Odd as it may seem to the uninitiated, it can be proved definitely that a given field strength at a receiver will result in a louder signal out of the receiver when the signal originates in a rare country than when it comes from a domestic station. The effect is still under study, and no real con-

(Continued on page 180)
Big Tower Reliability
in an INEXPENSIVE
LIGHT-WEIGHT MAST

Here's the new Trylon mast
that's attracting the attention of
radio amateurs, experimenters
and commercial operators ev-
everywhere. Weighing only 2 lbs.
per foot—but able to take winds
to 125 mph depending upon
antenna wind area—it is easy to
erect... easy to climb. Avail-
able in 10 ft. sections to a height
of 60 ft... at a cost of little
more than $1 a foot. Double-
welded, hot dip galvanized-
packed complete with fittings.
Takes almost any kind of an-
tenna. Write for Circular "Q."

WIND TURBINE CO.
Mast and tower specialists for 17 years
West Chester Pennsylvania

267 COUNTRIES
See page 93

CALL LETTER PLATES

A large, sturdy cast alumi-
num plate with
a black painted background. Red, green, blue and gray

LAPEL BUTTONS

An attractive metal button with
highly polished raised letters
against a black background.

W8ENH $2.95 POSTPAID

Type A-19 - For Your Car

Type A-19 - For Panel

Mounting

Type A-20L With Screw Backing

Type A-20P With Pin Backing

W9H7KZ $1.10 POSTPAID

80 Years of Progress
(Continued from page 49)

clusions have been reached beyond the fact that
the phenomenon exists. But remember — ama-
teurs noticed it first!

Neophytes will be interested in simple equa-
tions that can be used to determine S reports
when working a country from which they have
no QSL card, thus eliminating any guesswork or
personal factors. After thorough study and two
weeks use of the autocorrelator and the differ-
ential analyzer made available through the cour-
tesy of M.I.T., the following relations were
derived. DX signal strength reports can be determined by

\[
S = 6 + \frac{N}{33} \quad \text{for } N < 100
\]

or

\[
S = 7 + \left(\frac{N - 50}{75}\right) \quad \text{for } 100 < N < 200
\]

In either equation, \( N \) = number of countries
confirmed by card. \( S \) is given in the nearest whole
number.

Conclusions

The history of amateur radio is a glorious one
of 50 years of progress. A proud history, and who
knows what the next 50 years will bring? Surely
we need new fields to conquer.

How's DX?
(Continued from page 87)

New York City, N. Y. — W4BYF has good news
from PJSTR. Liberalization of amateur regulations in
Curacao is anticipated in the near future. W8WWU got
quite a bang from being PJ5HK's first QSO, the latter
employing a very homebrewed rig... LZ1ID/XX
is still sending cards through as W9AND will attest and, in
a P.S., the fellow lays claim to being the only ham in Bul-
garia (and strictly under cover) . . . . . PKK1I tipped
off W5DAW anent a PK1 QSL bureau as "Q6, Factory,
Djakarta, Indonesia," while ZD4AU would like to clear up
his QSL debts as W1IKE is informed and may be reached
in this respect as follows: J. L. Speer, Opns-Joburg, Mail
Clerk, Pan-American Airways, LaGuardia Field, N. Y.
. . . . Ex-FSGU/PMS, now FMTWE, vows to lick his
QSL backlog and wishes his W contacts be patient, says
W4PBU. We'll cast about for some info concerning the new
switches in French Colonial prefixes (numerals) although
it appears a matter of small importance since alphabetically
they are still fairly consistent — they tend to be alphabetically —
HBOJU will put HE1JJ on the air April 7th through and 10th and will try to
toll 3.5, 7- and 14-Mc. c.w. a try as well as 3.5 and 7-Mc.
phone. Charly is a 100%-QSL man and you may fire him
cards direct or via W5B.

W8A OLU and TO express considerable curiosity as to
what country the prefix EX1 represents inasmuch as so
many QSLs from EXIT are to be noted adorning the door-
ways of public buildings. He's a new one to us, we'll admit,
but savors a reminiscence of the FR1VYY confirmations
packed up on shackles in rural areas, now less often seen.

Correspondence
(Continued from page 88)

more fun to a low-power job than with the big ones. For me
the difficulty lends enchantment and the kick when some
remote bird comes back is greater because of the low power.

Now it is not easy but there are tricks one can use. A
VFO is essential and a hidden one is essential. You gotta stay
away from the pile-ups where a lot of high-power boys are
fighting each other. You must pick clear spots in the band,
and you must know which band to use at what times of day.

Many of the times I have run across some DX by calling
a little below or above the pile-up and thus I leave the h.p.
boys to fight themselves to a standstill while I QSK the DX.

Another thing you must do is to get to bed early and get
up early, say 6 a.m. and 2 a.m., if you want DX. Then the
local boys are tired out with their h.p. fights and the little
pip squeak you operate has a chance.

So the low-power boys can do it too!

— Keith Henney, W1QGU/K3BH