
 Nov/Dec 2002 27

8900 Marybank Dr
Austin, TX 78750
AC5OG@arrl.net

A Software-Defined Radio
for the Masses, Part 3

By Gerald Youngblood, AC5OG

Learn how to use DSP to make the PC sound-card interface

from Part 2 into a functional software-defined radio.

We also explore a powerful filtering technique

called FFT fast-convolution filtering.

P 1art 1 of this series provided a
general description of digital
signal processing (DSP) as used

in software-defined radios (SDRs) and
included an overview of a full-featured
radio that uses a PC to perform all
DSP and control functions. Part 22
described Visual Basic source code
that implements a full-duplex quadra-
ture interface to a PC sound card.

As previously described, in-phase
(I) and quadrature (Q) signals give the
ability to modulate or demodulate vir-
tually any type of signal. The Tayloe
Detector, described in Part 1, is a
simple method of converting a modu-
lated RF signal to baseband in quadra-
ture, so that it can be presented to the
left and right inputs of a stereo PC

1Notes appear on page 36.

sound card for signal processing. The
full-duplex DirectX8 interface, de-
scribed in Part 2, accomplishes the
input and output of the sampled

quadrature signals. The sound-card
interface provides an input buffer ar-
ray, inBuffer(), and an output buffer
array, outBuffer(), through which the

Fig 1—DSP software architecture block diagram.

mailto:AC5OG@arrl.net

28 Nov/Dec 2002

Public Const Fs As Long = 44100 ‘Sampling frequency in samples per
‘second

Public Const NFFT As Long = 4096 ‘Number of FFT bins
Public Const BLKSIZE As Long = 2048 ‘Number of samples in capture/play block
Public Const CAPTURESIZE As Long = 4096 ‘Number of samples in Capture Buffer
Public Const FILTERTAPS As Long = 2048 ‘Number of taps in bandpass filter
Private BinSize As Single ‘Size of FFT Bins in Hz

Private order As Long ‘Calculate Order power of 2 from NFFT
Private filterM(NFFT) As Double ‘Polar Magnitude of filter freq resp
Private filterP(NFFT) As Double ‘Polar Phase of filter freq resp
Private RealIn(NFFT) As Double ‘FFT buffers
Private RealOut(NFFT) As Double
Private ImagIn(NFFT) As Double
Private ImagOut(NFFT) As Double

Private IOverlap(NFFT - FILTERTAPS - 1) As Double ‘Overlap prev FFT/IFFT
Private QOverlap(NFFT - FILTERTAPS - 1) As Double ‘Overlap prev FFT/IFFT

Private RealOut_1(NFFT) As Double ‘Fast Convolution Filter buffers
Private RealOut_2(NFFT) As Double
Private ImagOut_1(NFFT) As Double
Private ImagOut_2(NFFT) As Double

Public FHigh As Long ‘High frequency cutoff in Hz
Public FLow As Long ‘Low frequency cutoff in Hz
Public Fl As Double ‘Low frequency cutoff as fraction of Fs
Public Fh As Double ‘High frequency cutoff as fraction of Fs
Public SSB As Boolean ‘True for Single Sideband Modes
Public USB As Boolean ‘Sideband select variable
Public TX As Boolean ‘Transmit mode selected
Public IFShift As Boolean ‘True for 11.025KHz IF

Public AGC As Boolean ‘AGC enabled
Public AGCHang As Long ‘AGC AGCHang time factor
Public AGCMode As Long ‘Saves the AGC Mode selection
Public RXHang As Long ‘Save RX Hang time setting
Public AGCLoop As Long ‘AGC AGCHang time buffer counter
Private Vpk As Double ‘Peak filtered output signal
Private G(24) As Double ‘Gain AGCHang time buffer
Private Gain As Double ‘Gain state setting for AGC
Private PrevGain As Double ‘AGC Gain during previous input block
Private GainStep As Double ‘AGC attack time steps
Private GainDB As Double ‘AGC Gain in dB
Private TempOut(BLKSIZE) As Double ‘Temp buffer to compute Gain
Public MaxGain As Long ‘Maximum AGC Gain factor

Private FFTBins As Long ‘Number of FFT Bins for Display
Private M(NFFT) As Double ‘Double precision polar magnitude
Private P(NFFT) As Double ‘Double precision phase angle
Private S As Long ‘Loop counter for samples

Fig 2—Variable declarations.

DSP code receives the captured sig-
nal and then outputs the processed
signal data.

This article extends the sound-card
interface to a functional SDR receiver
demonstration. To accomplish this, the
following functions are implemented
in software:
• Split the stereo sound buffers into I

and Q channels.

• Conversion from the time domain
into the frequency domain using
a fast Fourier transform (FFT).

• Cartesian-to-polar conversion of the
signal vectors.

• Frequency translation from the
11.25 kHz-offset baseband IF to
0 Hz.

• Sideband selection.
• Band-pass filter coefficient genera-

tion.

• FFT fast-convolution filtering.
• Conversion back to the time domain

with an inverse fast Fourier trans-
form (IFFT).

• Digital automatic gain control (AGC)
with variable hang time.

• Transfer of the processed signal to
the output buffer for transmit or
receive operation.

The demonstration source code may

 Nov/Dec 2002 29

be downloaded from ARRLWeb.3 The
software requires the dynamic link
library (DLL) files from the Intel
Signal Processing Library4 to be lo-
cated in the working directory. These
files are included with the demo soft-
ware.

The Software Architecture
Fig 1 provides a block diagram of

the DSP software architecture. The
architecture works equally well for
both transmit and receive with only a
few lines of code changing between the
two. While the block diagram illus-
trates functional modules for Ampli-
tude and Phase Correction and the
LMS Noise and Notch Filter, discus-
sion of these features is beyond the
scope of this article.

Amplitude and phase correction
permits imperfections in phase and
amplitude imbalance created in the
analog circuitry to be corrected in the
frequency domain. LMS noise and
notch filters5 are an adaptive form of
finite impulse response (FIR) filtering
that accomplishes noise reduction in
the time domain. There are other tech-
niques for noise reduction that can be
accomplished in the frequency domain
such as spectral subtraction,6 correla-
tion7 and FFT averaging.8

Parse the Input Buffers to
Get I and Q Signal Vectors

Fig 2 provides the variable and
constant declarations for the demon-
stration code. The code for parsing the
inBuffer() is illustrated in Fig 3. The
left and right signal inputs must be
parsed into I and Q signal channels
before they are presented to the FFT
input. The 16-bit integer left- and
right-channel samples are interleaved,
therefore the code shown in Fig 3 must
be used to split the signals. The arrays
RealIn() and RealOut() are used to
store the I signal vectors and the ar-
rays ImagIn() and ImagOut() are used
to store the Q signal vectors. This cor-
responds to the nomenclature used in
the complex FFT algorithm. It is not
critical which of the I and Q channels
goes to which input because one can
simply reverse the code in Fig 3 if the
sidebands are inverted.

The FFT: Conversion to the
Frequency Domain

Part 1 of this series discussed how
the FFT is used to convert discrete-
time sampled signals from the time
domain into the frequency domain (see
Note 1). The FFT is quite complex to
derive mathematically and somewhat
tedious to code. Fortunately, Intel has
provided performance-optimized code
in DLL form that can be called from a

Erase RealIn, ImagIn

For S = 0 To CAPTURESIZE - 1 Step 2 ‘Copy I to RealIn and Q to ImagIn
 RealIn(S \ 2) = inBuffer(S + 1) ‘Zero stuffing second half of

 ImagIn(S \ 2) = inBuffer(S) ‘RealIn and ImagIn Next S

Fig 3—Parsing input buffers into I and Q signal vectors.

Fig 4—FFT output bins.

nspzrFftNip RealIn, ImagIn, RealOut, ImagOut, order, NSP_Forw
nspdbrCartToPolar RealOut, ImagOut, M, P, NFFT ‘Cartesian to polar

Fig 5—Time domain to frequency domain conversion using the FFT.

Fig 6—Offset baseband IF diagram. The local oscillator is shifted by 11.025 kHz so that
the desired-signal carrier frequency is centered at an 11,025-Hz offset within the FFT
output. To shift the signal for subsequent filtering the desired bins are simply copied to
center the carrier frequency, fc, at 0 Hz.

single line of code for this and other
important DSP functions (see Note 4).

The FFT effectively consists of a
series of very narrow band-pass filters,
the outputs of which are called bins,
as illustrated in Fig 4. Each bin has a
magnitude and phase value represen-
tative of the sampled input signal’s
content at the respective bin’s center
frequency. Overlap of adjacent bins re-
sembles the output of a comb filter as
discussed in Part 1.

The PC SDR uses a 4096-bin FFT.
With a sampling rate of 44,100 Hz, the
bandwidth of each bin is 10.7666 Hz
(44,100/4096), and the center fre-
quency of each bin is the bin number
times the bandwidth. Notice in Fig 4
that with respect to the center fre-

quency of the sampled quadrature sig-
nal, the upper sideband is located in
bins 1 through 2047, and the lower
sideband is located in bins 2048
through 4095. Bin 0 contains the car-
rier translated to 0 Hz. An FFT per-
formed on an analytic signal I + jQ
allows positive and negative frequen-
cies to be analyzed separately.

The Turtle Beach Santa Cruz sound
card I use has a 3-dB frequency re-
sponse of approximately 10 Hz to
20 kHz. (Note: the data sheet states a
high-frequency cutoff of 120 kHz,
which has to be a typographical error,
given the 48-kHz maximum sampling
rate). Since we sample the RF signal
in quadrature, the sampling rate is
effectively doubled (44,100 Hz times

30 Nov/Dec 2002

two channels yields an 88,200-Hz ef-
fective sampling rate). This means
that the output spectrum of the FFT
will be twice that of a single sampled
channel. In our case, the total out-
put bandwidth of the FFT will be
10.7666 Hz times 4096 or 44,100 Hz.
Since most sound cards roll off near
20 kHz, we are probably limited to a
total bandwidth of approximately
40 kHz.

Fig 5 shows the DLL calls to the
Intel library for the FFT and subse-
quent conversion of the signal vectors
from the Cartesian coordinate system
to the Polar coordinate system. The
nspzrFftNip routine takes the time
domain RealIn() and ImagIn() vectors
and converts them into frequency do-
main RealOut() and ImagOut() vec-
tors. The order of the FFT is computed
in the routine that calculates the fil-
ter coefficients as will be discussed
later. NSP_Forw is a constant that
tells the routine to perform the for-
ward FFT conversion.

In the Cartesian system the signal
is represented by the magnitudes of
two vectors, one on the Real or x plane
and one on the Imaginary or y plane.
These vectors may be converted to a
single vector with a magnitude (M)
and a phase angle (P) in the polar sys-
tem. Depending on the specific DSP
algorithm we wish to perform, one co-
ordinate system or the other may be
more efficient. I use the polar coordi-
nate system for most of the signal pro-
cessing in this example. The
nspdbrCartToPolar routine converts
the output of the FFT to a polar vec-
tor consisting of the magnitudes in M()
and the phase values in P(). This func-
tion simultaneously performs Eqs 3
and 4 in Part 1 of this article series.

Offset Baseband IF Conversion
to Zero Hertz

My original software centered the
RF carrier frequency at bin 0 (0 Hz).
With this implementation, one can
display (and hear) the entire 44-kHz
spectrum in real time. One of the prob-
lems encountered with direct-conver-
sion or zero-IF receivers is that noise

increases substantially near 0 Hz.
This is caused by several mechanisms:
1/f noise in the active components,
60/120-Hz noise from the ac power
lines, microphonic noise caused by me-
chanical vibration and local-oscillator
phase noise. This can be a problem for
weak-signal work because most people
tune CW signals for a 700-1000 Hz
tone. Fortunately, much of this noise
disappears above 1 kHz.

Given that we have 44 kHz of spec-
trum to work with, we can offset the
digital IF to any frequency within the
FFT output range. It is simply a mat-
ter of deciding which FFT bin to des-
ignate as the carrier frequency and
then offsetting the local oscillator by
the appropriate amount. We then copy
the respective bins for the desired
sideband so that they are located at
0 Hz for subsequent processing. In the
PC SDR, I have chosen to use an off-
set IF of 11,025 Hz, which is one fourth

of the sampling rate, as shown in
Fig 6.

Fig 7 provides the source code for
shifting the offset IF to 0 Hz. The car-
rier frequency of 11,025 Hz is shifted
to bin 0 and the upper sideband is
shifted to bins 1 through 1023. The
lower sideband is shifted to bins 3072
to 4094. The code allows the IF shift
to be enabled or disabled, as is re-
quired for transmitting.

Selecting the Sideband
So how do we select sideband? We

store zeros in the bins we don’t want
to hear. How simple is that? If it were
possible to have perfect analog ampli-
tude and phase balance on the
sampled I and Q input signals, we
would have infinite sideband suppres-
sion. Since that is not possible, any
imbalance will show up as an image
in the passband of the receiver. Fortu-
nately, these imbalances can be cor-

If SSB = True Then ‘SSB or CW Modes
 If USB = True Then
 For S = FFTBins To NFFT - 1 ‘Zero out lower sideband
 M(S) = 0
 Next
 Else
 For S = 0 To FFTBins - 1 ‘Zero out upper sideband
 M(S) = 0
 Next
 End If
 End If

Fig 8—Sideband selection code.

Fig 9—FFT fast-convolution-filtering block diagram. The filter impulse-response coefficients are first converted to the frequency
domain using the FFT and stored for repeated use by the filter routine. Each signal block is transformed by the FFT and subsequently
multiplied by the filter frequency-response magnitudes. The resulting filtered signal is transformed back into the time domain using the
inverse FFT. The Overlap/Add routine corrects the signal for circular convolution.

IFShift = True ‘Force to True for the demo

 If IFShift = True Then ‘Shift sidebands from 11.025KHz IF
 For S = 0 To 1023
 If USB Then
 M(S) = M(S + 1024) ‘Move upper sideband to 0Hz
 P(S) = P(S + 1024)
 Else
 M(S + 3072) = M(S + 1) ‘Move lower sideband to 0Hz
 P(S + 3072) = P(S + 1)
 End If
 Next

 End If

Fig 7—Code for down conversion from offset baseband IF to 0 Hz.

 Nov/Dec 2002 31

rected through DSP code either in the
time domain before the FFT or in the
frequency domain after the FFT. These
techniques are beyond the scope of this
discussion, but I may cover them in a
future article. My prototype using
INA103 instrumentation amplifiers
achieves approximately 40 dB of op-
posite sideband rejection without cor-
rection in software.

The code for zeroing the opposite
sideband is provided in Fig 8. The
lower sideband is located in the high-
numbered bins and the upper side-
band is located in the low-numbered
bins. To save time, I only zero the num-
ber of bins contained in the FFTBins
variable.

FFT Fast-Convolution
Filtering Magic

Every DSP text I have read on
single-sideband modulation and de-
modulation describes the IF sampling
approach. In this method, the A/D con-
verter samples the signal at an IF such
as 40 kHz. The signal is then quadra-
ture down-converted in software to
baseband and filtered using finite im-
pulse response (FIR)9 filters. Such a
system was described in Doug Smith’s
QEX article called, “Signals, Samples,
and Stuff: A DSP Tutorial (Part 1).”10

With this approach, all processing is
done in the time domain.

For the PC SDR, I chose to use a
very different approach called FFT
fast-convolution filtering (also called
FFT convolution) that performs all fil-
tering functions in the frequency do-
main.11 An FIR filter performs convo-
lution of an input signal with a filter
impulse response in the time domain.
Convolution is the mathematical
means of combining two signals (for
example, an input signal and a filter
impulse response) to form a third sig-
nal (the filtered output signal).12 The
time-domain approach works very
well for a small number of filter taps.
What if we want to build a very-high-
performance filter with 1024 or more
taps? The processing overhead of the
FIR filter may become prohibitive. It
turns out that an important property
of the Fourier transform is that con-
volution in the time domain is equal
to multiplication in the frequency do-
main. Instead of directly convolving
the input signal with the windowed
filter impulse response, as with a FIR
filter, we take the respective FFTs of
the input signal and the filter impulse
response and simply multiply them
together, as shown in Fig 9. To get back
to the time domain, we perform the
inverse FFT of the product. FFT con-
volution is often faster than direct con-
volution for filter kernels longer than

Fig 10—FFT fast convolution filtering output. When the filter-magnitude coefficients are
multiplied by the signal-bin values, the resulting output bins contain values only within
the pass-band of the filter.

Public Static Sub CalcFilter(FLow As Long, FHigh As Long)
Static Rh(NFFT) As Double ‘Impulse response for bandpass filter
Static Ih(NFFT) As Double ‘Imaginary set to zero
Static reH(NFFT) As Double ‘Real part of filter response
Static imH(NFFT) As Double ‘Imaginary part of filter response

Erase Ih

Fh = FHigh / Fs ‘Compute high and low cutoff
Fl = FLow / Fs ‘as a fraction of Fs
BinSize = Fs / NFFT ‘Compute FFT Bin size in Hz

FFTBins = (FHigh / BinSize) + 50 ‘Number of FFT Bins in filter width

order = NFFT ‘Compute order as NFFT power of 2
Dim O As Long

For O = 1 To 16 ‘Calculate the filter order
 order = order \ 2
 If order = 1 Then
 order = O
 Exit For
 End If
Next

‘Calculate infinite impulse response bandpass filter coefficients
‘with window
nspdFirBandpass Fl, Fh, Rh, FILTERTAPS, NSP_WinBlackmanOpt, 1

‘Compute the complex frequency domain of the bandpass filter
nspzrFftNip Rh, Ih, reH, imH, order, NSP_Forw
nspdbrCartToPolar reH, imH, filterM, filterP, NFFT

End Sub

Fig 11—Code for the generating bandpass filter coefficients in the frequency domain.

64 taps, and it produces exactly the
same result.

For me, FFT convolution is easier
to understand than direct convolution
because I mentally visualize filters in
the frequency domain. As described in
Part 1 of this series, the output of the
complex FFT may be thought of as a
long bank of narrow band-pass filters
aligned around the carrier frequency

(bin 0), as shown in Fig 4. Fig 10 illus-
trates the process of FFT convolution
of a transformed filter impulse re-
sponse with a transformed input sig-
nal. Once the signal is transformed
back to the time domain by the inverse
FFT, we must then perform a process
called the overlap/add method. This
is because the process of convolution
produces an output signal that is

32 Nov/Dec 2002

equal in length to the sum of the in-
put samples plus the filter taps mi-
nus one. I will not attempt to explain
the concept here because it is best de-
scribed in the references.13

Fig 11 provides the source code for
producing the frequency-domain
band-pass filter coefficients. The
CalcFilter subroutine is passed the
low-frequency cutoff, FLow, and the
high-frequency cutoff, FHigh, for the
filter response. The cutoff frequencies
are then converted to their respective
fractions of the sampling rate for use
by the filter-generation routine,
nspdFirBandpass. The FFT order is
also determined in this subroutine,
based on the size of the FFT, NFFT.
The nspdFirBandpass computes the
impulse response of the band-pass fil-
ter of bandwidth Fl() to Fh() and a
length of FILTERTAPS. It then places
the result in the array variable Rh().
The NSP_WinBlackmanOpt causes
the impulse response to be windowed
by a Blackman window function. For
a discussion of windowing, refer to the
DSP Guide.14 The value of “1” that is
passed to the routine causes the re-
sult to be normalized.

Next, the impulse response is con-
verted to the frequency domain by
nspzrFftNip. The input parameters
are Rh(), the real part of the impulse
response, and Ih(), the imaginary part
that has been set to zero. NSP_Forw
tells the routine to perform the for-
ward FFT. We next convert the fre-
quency-domain result of the FFT, reH()
and imH(), to polar form using the
nspdbrCartToPolar routine. The filter
magnitudes, filterM(), and filter phase,
filterP(), are stored for use in the FFT
fast convolution filter. Other than
when we manually change the band-
pass filter selection, the filter response
does not change. This means that we
only have to calculate the filter re-
sponse once when the filter is first se-
lected by the user.

Fig 12 provides the code for an FFT
fast-convolution filter. Using the
nspdbMpy2 routine, the signal-spec-
trum magnitude bins, M(), are multi-
plied by the filter frequency-response
magnitude bins, filterM(), to generate
the resulting in-place filtered magni-
tude-response bins, M(). We then use
nspdbAdd2 to add the signal phase
bins, P(), to the filter phase bins,
filterP(), with the result stored in-
place in the filtered phase-response
bins, P(). Notice that FFT convolution
can also be performed in Cartesian
coordinates using the method shown
in Fig 13, although this method re-
quires more computational resources.
Other uses of the frequency-domain
magnitude values include FFT aver-

nspdbMpy2 filterM, M, NFFT ‘Multiply Magnitude Bins

nspdbAdd2 filterP, P, NFFT ‘Add Phase Bins

Fig 12—FFT fast convolution filtering code using polar vectors.

Fig 14—Actual 500-Hz CW filter pass-band display. FFT fast-convolution filtering is used
with 2048 filter taps to produce a 1.05 shape factor from 3 dB to 60 dB down and over
120 dB of stop-band attenuation just 250 Hz beyond the 3 dB points.

 ‘Convert polar to cartesian
 nspdbrPolarToCart M, P, RealIn, ImagIn, NFFT

 ‘Inverse FFT to convert back to time domain
 nspzrFftNip RealIn, ImagIn, RealOut, ImagOut, order, NSP_Inv

 ‘Overlap and Add from last FFT/IFFT: RealOut(s) = RealOut(s) + Overlap(s)
 nspdbAdd3 RealOut, IOverlap, RealOut, FILTERTAPS - 2
 nspdbAdd3 ImagOut, QOverlap, ImagOut, FILTERTAPS - 2

 ‘Save Overlap for next pass
 For S = BLKSIZE To NFFT - 1
 IOverlap(S - BLKSIZE) = RealOut(S)
 QOverlap(S - BLKSIZE) = ImagOut(S)

 Next

 Fig 15—Inverse FFT and overlap/add code.

‘Compute: RealIn(s) = (RealOut(s) * reH(s)) - (ImagOut(s) * imH(s))
 nspdbMpy3 RealOut, reH, RealOut_1, NFFT
 nspdbMpy3 ImagOut, imH, ImagOut_1, NFFT
 nspdbSub3 RealOut_1, ImagOut_1, RealIn, NFFT ‘RealIn for IFFT

 ‘Compute: ImagIn(s) = (RealOut(s) * imH(s)) + (ImagOut(s) * reH(s))
 nspdbMpy3 RealOut, imH, RealOut_2, NFFT
 nspdbMpy3 ImagOut, reH, ImagOut_2, NFFT

 nspdbAdd3 RealOut_2, ImagOut_2, ImagIn, NFFT ‘ImagIn for IFFT

Fig 13—Alternate FFT fast convolution filtering code using cartesian vectors.

aging, digital squelch and spectrum
display.

Fig 14 shows the actual spectral
output of a 500-Hz filter using wide-

bandwidth noise input and FFT aver-
aging of the signal over several sec-
onds. This provides a good picture of
the frequency response and shape of

 Nov/Dec 2002 33

the filter. The shape factor of the 2048-
tap filter is 1.05 from the 3-dB to the
60-dB points (most manufacturers
measure from 6 dB to 60 dB, a more
lenient specification). Notice that the
stop-band attenuation is greater than
120 dB at roughly 250 Hz from the
3-dB points. This is truly a brick-wall
filter!

An interesting fact about this
method is that the window is applied
to the filter impulse response rather
than the input signal. The filter re-
sponse is normalized so signals within
the passband are not attenuated in the
frequency domain. I believe that this
normalization of the filter response
removes the usual attenuation asso-

If AGC = True Then

 ‘If true increment AGCLoop counter, otherwise reset to zero
 AGCLoop = IIf(AGCLoop < AGCHang - 1, AGCLoop + 1, 0)

 nspdbrCartToPolar RealOut, ImagOut, M, P, BLKSIZE ‘Envelope Polar Magnitude

 Vpk = nspdMax(M, BLKSIZE) ‘Get peak magnitude

 If Vpk <> 0 Then ‘Check for divide by zero
 G(AGCLoop) = 16384 / Vpk ‘AGC gain factor with 6 dB headroom
 Gain = nspdMin(G, AGCHang) ‘Find peak gain reduction (Min)
 End If

 If Gain > MaxGain Then Gain = MaxGain ‘Limit Gain to MaxGain

 If Gain < PrevGain Then ‘AGC Gain is decreasing
 GainStep = (PrevGain - Gain) / 44 ’44 Sample ramp = 1 ms attack time
 For S = 0 To 43 ‘Ramp Gain down over 1 ms period
 M(S) = M(S) * (PrevGain - ((S + 1) * GainStep))
 Next
 For S = 44 To BLKSIZE - 1 ‘Multiply remaining Envelope by Gain
 M(S) = M(S) * Gain
 Next
 Else
 If Gain > PrevGain Then ‘AGC Gain is increasing
 GainStep = (Gain - PrevGain) / 44 ’44 Sample ramp = 1 ms decay time
 For S = 0 To 43 ‘Ramp Gain up over 1 ms period
 M(S) = M(S) * (PrevGain + ((S + 1) * GainStep))
 Next
 For S = 44 To BLKSIZE - 1 ‘Multiply remaining Envelope by Gain
 M(S) = M(S) * Gain
 Next
 Else
 nspdbMpy1 Gain, M, BLKSIZE ‘Multiply Envelope by AGC gain
 End If
 End If

 PrevGain = Gain ‘Save Gain for next loop

 nspdbThresh1 M, BLKSIZE, 32760, NSP_GT ‘Hard limiter to prevent overflow

 End If

Fig 16 – Digital AGC code.

ciated with windowing the signal be-
fore performing the FFT. To overcome
such windowing attenuation, it is typi-
cal to apply a 50-75% overlap in the
time-domain sampling process and
average the FFTs in the frequency
domain. I would appreciate comments
from knowledgeable readers on this
hypothesis.

The IFFT and Overlap/Add—
Conversion Back to the Time
Domain

Before returning to the time do-
main, we must first convert back to
Cartesian coordinates by using
nspdbrPolarToCart as illustrated in
Fig 15. Then by setting the NSP_Inv

flag, the inverse FFT is performed by
nspzrFftNip, which places the time-
domain outputs in RealOut() and
ImagOut(), respectively. As discussed
previously, we must now overlap and
add a portion of the signal from the
previous capture cycle as described in
the DSP Guide (see Note 13).
Ioverlap() and Qoverlap() store the in-
phase and quadrature overlap signals
from the last pass to be added to the
new signal block using the nspdbAdd3
routine.

Digital AGC with
Variable Hang Time

The digital AGC code in Fig 16 pro-
vides fast-attack and -decay gain

34 Nov/Dec 2002

control with variable hang time. Both
attack and decay occur in approxi-
mately 1 ms, but the hang time may
be set to any desired value in incre-
ments of 46 ms. I have chosen to imple-
ment the attack/decay with a linear
ramp function rather than an expo-
nential function as described in DSP
communications texts.15 It works ex-
tremely well and is intuitive to code.
The flow diagram in Fig 17 outlines
the logic used in the AGC algorithm.

Refer to Figs 16 and 17 for the fol-
lowing description. First, we check to
see if the AGC is turned on. If so, we
increment AGCLoop, the counter for
AGC hang-time loops. Each pass
through the code is equal to a hang time

Fig 17—Digital AGC flow diagram.

of 46 ms. PC SDR provides hang-time
loop settings of 3 (fast, 132 ms), 5 (me-
dium, 230 ms), 7 (slow, 322 ms) and 22
(long, 1.01 s). The hang-time setting is
stored in the AGCHangvariable. Once
the hang-time counter resets, the de-
cay occurs on a 1-ms linear slope.

To determine the AGC gain require-
ment, we must detect the envelope of
the demodulated signal. This is easily
accomplished by converting from Car-
tesian to polar coordinates. The value
of M() is the envelope, or magnitude,
of the signal. The phase vector can be
ignored insofar as AGC is concerned.
We will need to save the phase val-
ues, though, for conversion back to
Cartesian coordinates later. Once we

have the magnitudes stored in M(), it
is a simple matter to find the peak
magnitude and store it in Vpk with the
function nspdMax. After checking to
prevent a divide-by-zero error, we com-
pute a gain factor relative to 50% of
the full-scale value. This provides 6 dB
of headroom from the signal peak to
the full-scale output value of the DAC.
On each pass, the gain factor is stored
in the G() array so that we can find
the peak gain reduction during the
hang-time period using the nspdMin
function. The peak gain-reduction fac-
tor is then stored in the Gain variable.
Note that Gain is saved as a ratio and
not in decibels, so that no log/antilog
conversion is needed.

 Nov/Dec 2002 35

The next step is to limit Gain to the
MaxGain value, which may be set by
the user. This system functions much
like an IF-gain control allowing Gain
to vary from negative values up to the
MaxGain setting. Although not pro-
vided in the example code, it is a
simple task to create a front panel con-
trol in Visual Basic to manually set
the MaxGain value.

Next, we determine if the gain must
be increased, decreased or left un-
changed. If Gain is less than PrevGain
(that is the Gain setting from the sig-
nal block stored on the last pass
through the code), we ramp the gain
down linearly over 44 samples. This
yields an attack time of approximately
1 ms at a 44,100-Hz sampling rate.
GainStep is the slope of the ramp per
sample time calculated from the
PrevGain and Gain values. We then
incrementally ramp down the first 44
samples by the GainStep value. Once
ramped to the new Gain value, we
multiply the remaining samples by the
fixed Gain value.

If Gain is increasing from the
PrevGain value, the process is simply
reversed. If Gain has not changed, all
samples are multiplied by the current
Gain setting. After the signal block has
been processed, Gain is saved in
PrevGain for the next signal block.
Finally, nspdbThresh1 implements a
hard limiter at roughly the maximum
output level of the DAC, to prevent
overflow of the integer-variable out-
put buffers.

Send the Demodulated or
Modulated Signal to the
Output Buffer

The final step is to format the pro-
cessed signal for output to the DAC.
When receiving, the RealOut() signal
is copied, sample by sample, into both
the left and right channels. For
transmiting, RealOut() is copied to the
right channel and ImagOut() is cop-
ied to the left channel of the DAC. If
binaural receiving is desired, the I and
Q signal can optionally be sent to the
right and left channels respectively,
just as in the transmit mode.

Controlling the
Demonstration Code

The SDR demonstration code (see
Note 3) has a few selected buttons for
setting AGC hang time, filter selection
and sideband selection. The code for
these functions is shown in Fig 18. The
code is self-explanatory and easy to
modify for additional filters, different
hang times and other modes of opera-
tion. Feel free to experiment.

Private Sub cmdAGC_Click(Index As Integer)

 MaxGain = 1000 ‘Maximum digital gain = 60dB

 Select Case Index

 Case 0
 AGC = True
 AGCHang = 3 ‘3 x 0.04644 sec = 139 ms
 Case 1
 AGC = True
 AGCHang = 7 ‘7 x 0.04644 sec = 325 ms
 Case 2
 AGC = False ‘AGC Off
 End Select

End Sub

Private Sub cmdFilter_Click(Index As Integer)

 Select Case Index

 Case 0
 CalcFilter 300, 3000 ‘2.7KHz Filter
 Case 1
 CalcFilter 500, 1000 ‘500Hz Filter
 Case 2
 CalcFilter 700, 800 ‘100Hz Filter
 End Select

End Sub

Private Sub cmdMode_Click(Index As Integer)

 Select Case Index

 Case 0 ‘Change mode to USB
 SSB = True
 USB = True
 Case 1 ‘Change mode to LSB
 SSB = True
 USB = False
 End Select

End Sub

Fig 18 – Control code for the demonstration front panel.

The Fully Functional SDR-1000
Software

The SDR-1000, my nomenclature
for the PC SDR, contains a significant
amount of code not illustrated here. I
have chosen to focus this article on the
essential DSP code necessary for
modulation and demodulation in the
frequency domain. As time permits, I
hope to write future articles that delve
into other interesting aspects of the
software design.

Fig 19 shows the completed front-
panel display of the SDR-1000. I have
had a great deal of fun creating—and
modifying many times—this user in-
terface. Most features of the user in-
terface are intuitive. Here are some
interesting capabilities of the SDR-
1000:

• A real-time spectrum display with
one-click frequency tuning using a
mouse.

• Dual, independent VFOs with data-
base readout of band-plan alloca-
tion. The user can easily access and
modify the band-plan database.

• Mouse-wheel tuning with the abil-
ity to change the tuning rate with a
click of the wheel.

• A multifunction digital- and analog-
readout meter for instantaneous
and average signal strength, AGC
gain, ADC input signal and DAC
output signal levels.

• Extensive VFO, band and mode con-
trol. The band-switch buttons also
provide a multilevel memory on the
same band. This means that by
pressing a given band button

36 Nov/Dec 2002

multiple times, it will cycle through
the last three frequencies visited on
that band.

• Virtually unlimited memory capabil-
ity is provided through a Microsoft
Access database interface. The
memory includes all key settings of
the radio by frequency. Frequencies
may also be grouped for scanning.

• Ten standard filter settings are
provided on the front panel, plus in-
dependent, continuously variable
filters for both CW and SSB.

• Local and UTC real-time clock dis-
plays.

• Given the capabilities of Visual
Basic, the possibility for enhance-
ment of the user interface is almost
limitless. The hard part is “shooting
the engineer” to get him to stop de-
signing and get on the air.
There is much more that can be

accomplished in the DSP code to cus-
tomize the PC SDR for a given appli-
cation. For example, Leif Åsbrink,
SM5BSZ, is doing interesting weak-
signal moonbounce work under
Linux.16

Also, Bob Larkin, W7PUA, is using
the DSP-10 he first described in the
September, October and November
1999 issues of QST to experiment with
weak-signal, over-the-horizon micro-
wave propagation.17

Coming in the Final Article
In the final article, I plan to de-

scribe ongoing development of the
SDR-1000 hardware. (Note: I plan to
delay the final article so that I am able
to complete the PC board layout and
test the hardware design.) Included
will be a tradeoff analysis of gain dis-
tribution, noise figure and dynamic
range. I will also discuss various ap-
proaches to analog AGC and explore
frequency control using the AD9854
quadrature DDS.

Several readers have indicated in-
terest in PC boards. To date, all proto-
type work has been done using
“perfboards.” At least one reader has
produced a circuit board, that person
is willing to make boards available to
other readers. If you e-mail me, I will

gladly put you in contact with those
who have built boards. I also plan to
have a Web site up and running soon
to provide ongoing updates on the
project.

Notes
1G. Youngblood, AC5OG, “A Software De-

fined Radio for the Masses, Part 1,” QEX,
Jul/Aug 2002, pp 13-21.

2G. Youngblood, AC5OG, “A Software De-
fined Radio for the Masses, Part 2,” QEX,
Sep/Oct 2002, pp 10-18.

3The demonstration source code for this
project may be downloaded from ARRLWeb
at www.arrl.org/qexfiles/. Look for
1102Youngblood.zip.

4The functions of the Intel Signal Processing
Library are now provided in the Intel Perfor-
mance Primitives (Version 3.0, beta) pack-
age for Pentium processors and Itanium
architectures. An evaluation copy of IPP is
available free to be downloaded from
developer.intel.com/software/products/
ipp/ipp30/index. htm.Commercial use of
IPP requires a full license. Do not use IPP
with the demo code because it has only
been tested on the previous signal pro-
cessing library.

5D. Hershberger, W9GR, and Dr S. Reyer,
WA9VNJ, “Using The LMS Algorithm
For QRM and QRN Reduction,” QEX,
Sep 1992, pp 3-8.

6D. Hall, KF4KL, “Spectral Subtraction for
Eliminating Noise from Speech,” QEX,
Apr 1996, pp 17-19.

7J. Bloom, KE3Z, “Correlation of Sampled
Signals,” QEX, Feb 1996, pp 24-28.

8R. Lyons, Understanding Digital Signal
Processing (Reading, Massachusetts:
Addison-Wesley, 1997) pp 133, 330-340,
429-430.

9D. Smith, KF6DX, Digital Signal Processing
Technology (Newington, Connecticut:
ARRL, 2001; ISBN: 0-87259-819-5; Order
#8195) pp 4-1 through 4-15.

10D. Smith, KF6DX, “Signals, Samples and
Stuff: A DSP Tutorial (Part 1),” QEX (Mar/
Apr 1998), pp 5-6.

11Information on FFT convolution may be
found in the following references:
R. Lyons, Understanding Digital Signal Pro-
cessing, (Addison-Wesley, 1997) pp 435-
436; M. Frerking, Digital Signal Processing
in Communication Systems (Boston, Mas-
sachusetts: Kluwer Academic Publishers)
pp 202-209; and S. Smith, The Scientist
and Engineer’s Guide to Digital Signal Pro-
cessing (San Diego, California: California
Technical Publishing) pp 311-318.

12S. Smith, The Scientist and Engineer’s
Guide to Digital Signal Processing (Califor-
nia Technical Publishing) pp 107-122. This
is available for free download at www.
DSPGuide.com.

13Overlap/add method: Ibid, Chapter 18,
pp 311-318; M. Freirking, pp 202-209.

14S. Smith, Chapter 9, pp 174-177.
15M. Frerking, Digital Signal Processing in

Communication Systems, (Kluwer Aca-
demic Publishers) pp 237, 292-297, 328,
339-342, 348.

16See Leif Åsbrink’s, SM5BSZ, Web site at
ham.te.hik.se/homepage/sm5bsz/.

17See Bob Larkin’s, W7PUA, homepage at
www.proaxis.com/~boblark/dsp10.htm.

Fig 19—SDR-1000 front-panel display.

 ��

http://www.arrl.org/qexfiles/
http://developer.intel.com/software/products/ipp/ipp30/index.htm
http://developer.intel.com/software/products/ipp/ipp30/index.htm
http://www.DSPGuide.com
http://www.DSPGuide.com
http://ham.te.hik.se/homepage/sm5bsz/
http://www.proaxis.com/~boblark/dsp10.htm

