Signals, Samples and Stuff:
A DSP Tutorial (Part 1)

“DSP” is a buzzword of the *90s. Have you wondered
what its all about? This article begins an ongoing
QEX walk through the forest of DSP

By Doug Smith, KF6DX/7

hat is all this DSP business, anyway? How does

it really work? Certain crucial concepts are used

in digital radio design. In this first article of a
series, I'll describe these concepts in some detail. All of
them are important to understand in the execution of a DSP
transceiver. In the second article, we’ll investigate an ac-
tual design. We'll look at architectural issues that impact
decisions made during development, and we’ll review the
final configuration. In the third article, we’ll survey some
advanced DSP techniques such as adaptive filtering and
special demodulation methods.

The Mathematics of Complex Signals

DSP implementations of radio transceiver functions
compel designers to reexamine the mathematics that de-
scribe them. Computers and microprocessors are good at
crunching numbers, but one thing stands out about them:
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they do exactly what they are told! Therefore, if we expect
a DSP system to generate an SSB signal, we'd better know
those calculations to perform, and those to avoid.

Real and Complex Signals

Let’s start with the job of taking a real input signal, say
the audio from a microphone, and converting it to an SSB
signal that can be transmitted over the air. We have to
translate its frequency upward by the carrier frequency’s
value, and in so doing, preserve the spectral content. If we
wish to produce an upper sideband (USB) signal, we want
the carrier and lower sideband to be suppressed by as much
as possible. We’ll explore how the mathematics of complex
signals achieve this using the so-called “phasing method”
of SSB generation.

Of course, we generate SSB signals in other ways, such as
the filter method. Because DSP makes it easy to build broad-
band phase shifters, and because the use of complex signals
gives rise to a great deal of flexibility and precision, the
phasing method has dominated DSP SSB generation to date.

Complex signals are not generally well understood, and
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they’re an obstacle in the way of those who wish to grasp
the concepts. The idea of negative frequency is especially
troublesome. A real signal, such as a cosine wave, is nor-
mally thought of as a positive frequency. It can be seen on
an oscilloscope or spectrum analyzer in the positive-
frequency domain. It can be transmitted and detected nor-
mally. We shall see, however, that such a signal actually
consists of positive and negative frequencies when exam-
ined in the complex domain.
Our real cosine wave embodies the relation:

X, =coswt

(Eq 1)

where o = 2rf, and ¢ is time. In the complex domain, the
cosine wave is really the sum of two complex signals:

(Eq 2)

This signal has both positive- and negative-frequency
components! The left-hand term is positive, the right-hand
negative—the imaginary terms cancel and the real terms
reinforce to make the equation true. In the complex plane,
where the real part is one axis and the imaginary part the
other, this signal can be represented as two vectors rotat-
ing in opposite directions. See Fig 1.

While this depiction is beautiful and elegant to a math-
ematician, what does it really mean to you and me? Well,
it meansthat signals represented in complex form can have
aone-sided spectrum, ie, having only positive or only nega-
tive frequencies. This is useful as we mix our signal up-
ward to its final RF position.

X, =é[(coswt+jsinwt)+(c0swt—jsin(ot)]

Frequency Translation and Complex Mixing

We see that if we were able to translate the spectrum of
our cosine wave—with its symmetrical positive and nega-
tive parts—upward in frequency far enough, we’d have two
positive frequencies separated by twice the original signal
frequency. For a real signal, this is exactly what happens
when it’s applied to an analog mixer! Both the sum and
difference frequencies are generated, and the amplitude of
each is half the original amplitude. So it’s no coincidence
that a mixer’s conversion loss is about 6 dB—precisely what
physics predicts.

We now invoke an identity discovered by Euler, which
states that:

e/ =coswt+ jsinwt (Eq 3)
This is a more convenient notation for complex sinusoi-
dal signals. So now, our real cosine wave takes the form:

coscotzé(ej“’t+e'jm) (Eq 4)
When we mix this with a real carrier, say
¥ = Ccos Wyt (Eq 5)

we get the product of the two inputs:

Imaginary

Fig 1—Vector representation

Real of a real cosine wave.
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(engt +e-Ja)0t) (eja)t+e—jwt
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(cos wgt)(cos wt) = (Eq 6)

[ej(w0+m)t +e—j(w0+m)t]+[ej(a)0—m)t +e—j(a)0—w)t]

4
(Eq7)

= —;—[cos(wo + @)t + cos(wy — a))t] (Eq 8)

The multiplication of the two cosine waves results in a
frequency translation of their two-sided spectra. Now, let’s
consider what happens when we mix or multiply two com-
plex, one-sided signals—as opposed to real, two-sided sig-
nals—together.

SSB Generation

We now present a new function, I, to represent the ampli-
tude of the microphone audio versus time. This is a real sig-
nal with a two-sided spectrum. It’s possible to convert this
real signal to a complex signal—with only positive-frequency
components—by generating a quadrature signal, €,
wherein all frequencies are phase-shifted by 90° from I, and
treating I, and @, as a complex, or analytic, pair. The signal
I, + jQ, contains only positive frequencies. The negative fre-
quencies cancel each other, while the positive frequencies
reinforce. The function that phase shifts all the frequency
components by 90° is called a Hilbert transform. This would
be difficult to achieve in the analog world, but is easy in DSP.

We now multiply this analytic signal by a complex
oscillator:

Y, = e/t (Eq 9)
and the translated signal takes the form:
ej“"”(lt +jQ; ) = (cos wyt + jsin wpt)(1; + jQ;) (Eq 10)

= (I, cos wyt — @, sin wyt) + j(I, sin wyt + @, cos wyt)

(Eq 11)

Since we're interested in transmitting this SSB signal

via a single path over the air, we only have to compute the

real part. This “half-complex” mixer is implemented as

shown in Fig 2. It produces a real USB signal. This is, in
fact, the good old phasing method.

Properties of SSB Signals

Since the amplitude of the carrier is constant, the ampli-
tude of the SSB signal can be specified as some function of
the modulating signal. If we think of the converted micro-
phone audio signal I; + j@Q, as a vector, it follows that its
length is equal to the instantaneous amplitude:

1
A, = (1,2 +Q,2)2 (Eq 12)

The phase of the signal is the instantaneous angle of this

rotating vector:

o = tan'l(%j

t

(Eq 13)
Now we can rewrite the real part of Eq 11 as:

EK[ejwot(lt +j6; )] = A, cos(wgt + ;) (Eq 14)

This shows that an SSB signal is a hybrid of both ampli-
tude and phase modulation. Also, note that having defined
the amplitude and phase of the baseband signal in Eq 12
and 13 above, we can write:



(I, + jQ:) = Are™® (Eq 15)
directly relating the envelope and phase to the analytic

baseband signal. The amplitude and phase of this analytic
signal are identical to those of the SSB wave of Eq 11.

DSP Receiver [ Exciter Architectures for SSB

With all this under our belts, we're ready to examine how
these concepts apply to actual digital SSB receivers and
exciters. While we won’t explore all the ways DSP trans-
ceivers can be configured, and won’t yet dive into all the
minute detail, we will look at several designs to illustrate
the principles.

Fig 3 is the block diagram of a digital exciter. The audio
is normally low-pass filtered before sampling to remove

components above half the sampling frequency of the ana-
log-to-digital converter (ADC). A sampling frequency that
is one quarter of the output sampling frequency is conve-
nient. The audio passes through two band-pass filters, one
of which incorporates a 90° phase shift. This converts the
real signal to a complex signal I, + j@, having only positive
frequencies. The filters are identical in frequency response
and differ only in their phase responses.

The construction details of these filters will be treated
later, under “Digital Filters.” For now, it’s sufficient to say
that it’s easy to build a frequency-independent DSP phase
shifter—a fantasy in the analog world! The key concept
here is that the real and imaginary parts of the analytic
signal I; + jQ, are handled separately in DSP.

The analytic signal is translated to the output frequency
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Fig 2—Block diagram of a half-complex mixer.
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Fig 3—Block diagram of a digital SSB exciter.
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through multiplication by a complex carrier:

/P = cos wyt + jsin wyt (Eq 16)

and the result is just as it was for Eq 11. Only the real part
is computed, and that is at a sampling rate four times the
input sample rate. For every sample from the filters, we
use four samples of the complex oscillator.

This is beneficial, because for each full output cycle, the
cosine oscillator produces values 1, 0, -1, and 0; the sine
oscillator produces values 0, 1, 0, and —1. No actual multipli-
cations take place, which saves time and accuracy. The sam-
pling rate of the filter outputs must be artificially increased
to make this procedure work—it’s called interpolation.

The sampling process causes the output spectrum to re-
peat at harmonics of the sampling frequency. To remove

thesealiases, an analog anti-alias filter is required after the
digital-to-analog converter (DAC). A digital interpolation
filter eases the requirements of this anti-alias filter. It op-
erates at the higher output sampling rate, taking the addi-
tional input samples to be zero. The filter shape is designed
to attenuate the harmonic spectra in the original signal.
In the example, a USB signal is produced. Had the sum
of the real and imaginary parts been taken instead of the
difference, an LSB signal would have emerged.

An Independent Sideband (ISB) Exciter

We saw how easy it was to change sidebands in the above
example by either subtracting or adding the real and imagi-
nary parts. This makes it easy to create an ISB exciter that
transmits separate information on each sideband.
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Fig 4—Block diagram of a digital ISB exciter.
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Fig 5—Block diagram of a digital SSB receiver.
6 QEX



The block diagram of such an exciter is shown in Fig 4.
Working through the math for each sideband—and taking
the input for the other sideband to be zero—shows that the
system works as advertised.

While there are other ways to design sideband exciters in
DSP, these examples illustrate the flexibility afforded by
using the phasing method. The basic structures in the ex-
citer architecture are directly applicable to a sideband re-
ceiver, too. Let’s consider what happens on the receiving end
of an SSB radio link, and see how the math works in reverse.

A Digital SSB Receiver

Asin digital exciters, phasing methods prevail in receiv-
ersbecauseitis easy tobuild frequency-independent phase
shifters and because amplitude accuracy is preserved
throughout. The first job is to convert the analog IF signal
to digital form. Because of dynamic range considerations,
the frequency at which the sampling is performed is lim-
ited to just above the audio range. Current technology dic-
tates that a 16-bit ADC is used at a low-frequency IF.

As expertise in ADCs progresses, the digitization point
will move closer to the antenna. For now, we must stick with
traditional analog front ends, using very high-frequency
first IFs to avoid image and spurious problems, and low-
frequency second IFs to satisfy the ADCs. The sampled IF
signal must be sharply band pass limited because of the
restrictions imposed by current DSP processor performance.

Fig 5 presents a block diagram for a digital SSB receiver.
After the IF signal is digitized, we wish to reduce the sam-
pling rate—and the filtered bandwidth—as soon as pos-
sible. This is so because we need as much time as possible
between input samples for the intense computations we
must perform. Reduced sampling rates also ease the de-
sign of the digital filters that provide the final selectivity.

A technique known as harmonic sampling allows us to
reduce the initial sampling rate to twice the input signal
bandwidth. Let’s say this bandwidth is about 15 kHz,
enough for FM and other modulation formats, yet not so
wide as to let in lots of QRM.

Therefore, the sampling rate must be at least 30 kHz,

and we select something slightly higher to ease the analog
IF filtering requirements. The digitized signal is then
translated to baseband using the complex mixing algo-
rithms outlined previously. Since the input signal, X; is
real, only two multiplications are necessary:

X,e?%" = X, cos wyt + jX, sin wpt (Eq 17)

Now we have an analytic signal as before, and the value
of the oscillator, @y, is chosen to beat the carrier frequency
to zero. Again, the sampling rate is converted by choosing
an IF that is four times the sample rate after translation,
so that the oscillator values are only 1, 0, —1 or 0. This time
though, we’re reducing the sampling rate, and thisis called
decimation.

The sampling process again produces spectra at harmon-
ics of the sampling frequency. To avoid mixing these into the
passband at the reduced sampling rate, a decimation filter
is required. This filter operates at the higher sampling rate,
and limits the bandwidth to half the lower sampling rate.

Sinceé the carrier frequency is at zero, the spectrum of
our analytic signal contains both negative and positive
components. The negative frequencies represent the lower
sideband, and the positive frequencies the upper sideband.
The I, and @, signals are passed through two band-pass
filters, one of which has a built-in 90° phase shift. These
filters provide the final receiver selectivity, and are again
identical in frequency response. The outputs of these fil-
ters are either subtracted or added to demodulate the USB
or LSB audio. The digital audio signal is converted back to
analog by the DAC, and the output is low-pass filtered to
remove the sampling-frequency-caused harmonic spectra.

Obviously, we could both add and subtract the terms to
produce an ISB receiver. Very little additional processing
overhead would be involved, but we would need another
DAC and low-pass filter.

We see that this receiver processes signals in a way that
is the reverse of the digital exciter above. The mathematical
relationships we described above define the transforms
between real audio signals and real SSB signals, and we’'ve
seen how they work in both directions. Analytic signals can
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Fig 6—Block diagram of a digital AM receiver.
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also be used to demodulate other types of signals, such as
AM and FM. Let’s look briefly at how these are handled in
DSP.

AM Demodulation

In conventional AM, the envelope of the received signal is
equal to the amplitude of the baseband audio. So to imple-
ment an AM detector, we can compute the magnitude of the
analytic signal I; + j@, as in Eq 12. The resulting audio sig-
nal is free of the distortion encountered in detectors using
rectification methods. Note that in the AM demodulator
shown in Fig 6, the second pair of filters isn’t necessary; and
the decimation filters provide the final selectivity.

Now that we must use Eq12, we're stuck with computing
the square root of a number. We could use the relation

1
X2 = 1og-1[—-—-1°g X )
2

but this involves computing a logarithm, or looking it up
from a very large table. Fortunately, Sir Isaac Newton
comes to the rescue with his root-finder algorithm!

In the 17th century these calculations were quite a bur-
den, and anything that sped them up was a major blessing.
Logarithms had only just been invented, and large tables
of them were both expensive and scarce. Newton found a
quick, simple iterative method for finding the roots of cer-
tain equations. For square roots, it goes like this: Take a
crude guess at the square root of the number in question.
Divide the number by the crude guess. Add the crude guess
to this result, and divide it all by 2. Then, use this result

(Eq 18)
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Fig 7a—Sine wave of frequency much less than the sampling
frequency.
Fig 7b—Sampled sine wave.
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as the new crude guess and repeat the process to obtain the
desired accuracy.

Number

_Number | cugss,
GUESS,; | old

let GUESS,,, = 5
(Eq 19)
let GUESS,;; = GUESS, ,,,

REPEAT

In practice, the accuracy of the result reaches the limit
of 16-bit representation in five or six iterations. This
method is much quicker and more accurate, for assembly-
language implementations, than any alternative.

FM Demodulation

In FM, the instantaneous frequency of the carrier is
equal to the amplitude of the baseband signal. We discov-
ered how to compute the phase of our analytic signal above,
so we can build a PM demodulator right away using Eq 13.
The arctangents can be looked up from a table, or we can
compute them using power series.

Once the phase at each sample time is found, the fre-
quency is calculated as the rate of change of the phase:
fi= %‘ (Eq 20)

Differentiating the string of phase samples is accom-
plished using the technique of first differencing. We sim-
ply take the difference between the adjacent samples:
fn = ¢n - ¢n-—1 (Eq 21)

This is the FM demodulator output.

Alternatively, FM can be directly calculated by evaluat-
ing the vector relationships and using:

L, (d@,
y % )1(a)
t- 12 + Q2
then low-pass filtering.
Finally, a digital discriminator can be used to translate
the FM to AM, which is then demodulated as described above.
While the mathematics of the various modulation for-
mats can be complicated, they dictate exactly what the
computational block diagrams must look like. In a DSP
implementation, the equations hold true and the results
are precisely as predicted by theory. Next, we’ll develop
the theories of sampling and data-rate conversion to see
what limitations they impose on us, and what advantages
apply to digital radio design.

(Eq 22)

Sampling Theory and Multirate Processing

In the field of radio communication, we deal with analog
signals. In order to perform our DSP magic on them, there-
fore, the first and last steps in the processing chain involve
conversion to and from digital form. Once a signal is digi-
tized, we fight to preserve its integrity through the numeri-
cal precision of our calculations. At the interfaces to the
analog world, the enemies are manifold: noise, distortion
and lack of dynamic range and resolution. We’ll explore the
characteristics of sampled signals, and the reasons for
degradation in conversion techniques.

Sampling Theory: Digitizing the Analog World
Sampling is the periodic measurement of the signal volt-

age and the conversion of this voltage to a number. If we
take f; measurements per second, we call f; the sampling
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Fig 8a—Spectrum of sampling impulses.
Fig 8b—Spectrum of a band of real input signals.
Fig 8c—Spectrum of the sampled band of signals.
frequency. We can represent the sampled signal as a string
of amplitude measurements over time, as shown for the 1.2000 . ,
case of a sine wave in Fig 7. 0.8000 ! !
To completely understand the nature of the sampled sig- o
nal, first consider a function §;, consisting of unit impulses ° 0.4000
spaced at intervals of the sampling time, f,-1. This is the £ 0.0000 G
time-domain representation of the sampling function. The g 4000 i
sampled signal can be thought of as the sampling function -0 ‘
multiplied by the continuous input signal, x;: -0.8000 Bl
Y = %6 (Eq 23) -1.2000
The result is the convolution of the two signals—equiva-
lent to their mixing in the analog world. A look at the spec-
trum of this result shows that it repeats at intervals of the
sampling frequency, as shown in Fig 8 for a band of sig-
nals.
These repetitions are called aliases, and are as real as 1.2000
the fundamental in the sampled signal. They each contain mn Ia
all the information sufficient to describe the original sig- 0.8000
nal. In our example, the sampling frequency is much higher o 0.4000
than the signal frequency, so the output still roughly re- 3
sembles the original sine wave. 5 0.0000 ®
E
Sine Wave, Alias Sine Wave: Harmonic Sampling < -0.4000 —\
Imagine that the input frequency is greater than the -0.8000 7 7
sampling frequency. (See Fig 9.) Now, the output nolonger 12000 o o |
matches the input. Note that the sampled signal is still in ’ [ 11 [ 11

the shape of a sine wave, though, and that its frequency is
lower than that of the input. Ordinarily, this wouldn’t be
a happy situation.

Nevertheless, a downward frequency translation is useful
in the design of an IF-DSP receiver. In addition, lower sam-

Sample Times

Fig 9a—Sine wave of frequency greater than sampling
frequency.
Fig 9b—Harmonically sampled sine wave.
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pling frequencies are desirable because they provide more

time between samples for signal modification algorithms. .

Caution is required, though. An input signal near twice the
frequency of that in Fig 9 would produce the same output. To
use this technique, therefore, we must first band pass limit
the input. This trick is known as harmonic sampling.

The input signals must fall between the fundamental, or
some harmonic, of the sampling frequency and the point
half way to the next harmonic. A frequency translation will
take place, but no information about the shape of the input
signal will be lost because of this sampling technique. A
frequency-domain representation of harmonic sampling is
illustrated in Fig 10.

Information can be lost, however, because of inaccura-
cies and noise introduced by the ADC. After digital pro-
cessing, additional distortion can be introduced by the DAC
as we convert back to analog. Let’s look at these errors.

Noise and Distortion in Signal Conversion

An ADC is a device that measures an analog signal volt-
age and outputs a proportional number. A DAC is another
device that performs the reverse operation, outputting some
analog voltage proportional to the numerical input. Both of
these devices inject noise and distortion, at levels that are
predicted by sampling theory. Their performance is so criti-
cal to any DSP transceiver that it’s worth our effort to exam-
ine causes of degradation and learn how to combat them.

Aside from stray noise picked up in the physical circuits,

the deleterious effects occurring in signal converters can
be grouped as follows, and discussed:

¢ Nonlinearities in quantization step sizes

¢ Quantization noise

* Aperture jitter

* Noise figure and distortion in analog stages

» Zeroth-order sample-and-hold distortion

Nonlinearities

Nonlinearity means distortion, and—in this case—noise.
The quantization steps of any real converter are not per-
fectly spaced, and conversion results are contaminated by
the inaccuracy. In general, two types of nonlinearities can
be characterized: differential nonlinearity (DNL), and in-
tegral nonlinearity (INL).

DNL is the measure of the output nonuniformity from one
input step to the next. It is expressed as the maximum error
in the output between adjacent input steps, measured over
the entire input range of the device. In an 8-bit converter, for
example, the worst errors typically occur when the output
changes from 01111111 to 10000000, using base-2 notation.

Since we're talking about the accuracy of the smallest
steps the converter can resolve, noisy low-order distortion
products caused by this effect limit the dynamic range of
the device. Current technology uses correction systems to
compensate for temperature variations that would other-
wise degrade performance beyond acceptable bounds.

A converter is considered monotonic if a steady increase
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2fs 3fs 4fs

Fig 10a—Spectrum of sampling impulses.
Fig 10b—Spectrum of a band of real signals.
Fig 10c—Spectrum of harmonically sampled band of signals.
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in the input signal always results in an increase in the
output. Device manufacturers attempt to hold DNL to £0.5
bits so that monotonicity is maintained.

The second measure of nonlinearity, INL, is a measure of
the device’s large-signal-handling ability. If we inject a sig-
nal of amplitude A and measure the output, then inject a
signal of amplitude 100 A, we expect the output to increase
in exact proportion. The INL is a measure of the maximum
error in the output between any two input levels. Another
way of depicting this measurement is to plot the input
against the output, and see how straight the line is.

INL produces harmonic distortion and IMD that are
obviously undesirable. Typical values are from +1 to +2 bits
over the entire range.

Quantization Noise

Quantization noise, caused by the inability to resolve
signals near the amplitude of the smallest quantization
step, is basic to all converters and spread uniformly over
the entire input bandwidth of f/2. The noise power is:

_ V}%eak

" 3R2%

in watts, and so the noise density is:

(Eq 24)

2
ND.. = Pqn - 2Vpeak
"o (fs) 8fR2%
[_s) fs (Eq 25)
2

in watts/Hertz, where V., is half the maximum peak-to-
peak input signal, R is tille ADC input resistance, and b is
the number of bits of resolution. Note that the quantiza-
tion noise density decreases by 6 dB for every bit of reso-
lution in the converter and by 3 dB every time we double
the sampling frequency.

Since the maximum sine wave the converter can handle
produces a power of:

(Vpeak ]2

P. = \/E — Vgeak (Eq 26)
sine R 2R

the maximum signal-to-noise ratio (SNR) is:

P 3(22b)

—sme - 2 =(6.02b+1.76)dB (Eq 27)
Py, 2

For a 18-bit converter, this is about 98 dB. If we could
increase the sampling rate by some factor N, then digitally
filter the output back down to the lower rate, we could

o 27X +

—~—

In

Fig 11a—Block diagram of an IR filter for L = 5.
Fig 11b—Equivalent block
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increase the SNR by almost the factor N. The quantization
noise would be spread over a much larger bandwidth, and
we'd use a decimation filter to eliminate the higher-
frequency noise in bringing the sampling rate back down.
This technique is known as over-sampling.

So-called “sigma-delta” ADCs use this method to achieve
the best possible dynamic range and noise performance.
They represent the state of the art in ADC technology.

Aperture Jitter

In addition to the above sources of noise and distortion,
noise is introduced by slight variations in the exact times
of sampling. Phase noise in the clock source used to derive
the sample times, as well as other inaccuracies in the sam-
pling mechanisms, produce undesired phase modulation of
the sampled signal. If we assume this phase noise is not
correlated with the input signal, a sine wave input gener-
ates a white noise component in the output having a power
density relative to the input power:-

N o _ 87r2f 203
Psine fs
where f is the signal frequency, and g, is the RMS time
jitterin the sampling rate. Note that the result is expressed

in dB/Hz, and is proportional to the squares of both the
signal frequency (f) and the time jitter (o).

(Eq 28)

Noise Figure Issues

Quite often, the smallest signal the converter can dis-
cern is so small that noise generated in the analog stages
of the converter becomes a problem. Consider a converter
with 16 bits of resolution and a peak-to-peak input limit of
5 V. Say its input impedance is 10 kQ. The noise power
contributed by quantization is:

_ . 25® -15
P, ~48.5x107°W = 103 dBm (Eq 29)

" (3)(10,000)22)19)

It’s likely, if the ADC comparators have a wide input band-
width and a noise figure of more than 6 dB, that their noise
contribution exceeds this amount. It’s imperative, therefore,
to evaluate converters based on all their properties before
deciding to incorporate them in a DSP transceiver.

Zeroth-Order Sample-and-Hold Distortion

Typical converters are sample-and-hold devices. That is,
they continue to output the last sampled value throughout
the sample period. This effect acts as a filter having a
frequency response:

. [ o ]
sin| —
wS
H,=———=
W
[ O J

This results in a high-frequency rolloff that is quite un-
desirable in many circumstances. For example, if the out-
put frequency is one quarter of the sample frequency, an
attenuation of about 1 dB will occur. This is mainly a prob-
lem in the final DAC stage, where signals are converted
back to analog. We see that increasing the output sampling
frequency reduces the attenuation, and that may call for
interpolation of the output.

I've referred to changes in sampling rate called de-
cimation and interpolation and alluded to the advan-
tages in performing these rate changes. Now, let’s look
at them in more detail. This will lead us naturally into
a discussion of digital filtering.
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(Eq 30)

Sampling Rate Reduction: Decimation

Sampling at higher rates can be quite beneficial because
it eases the design of the analog filters we must use to avoid
the aliasing phenomenon. It also helps reduce noise intro-
duced by quantization and aperture jitter.

At some stage, however, we want to reduce the sampling
ratein order to provide as much time as possible in between
samples for other calculations. When it’s time to digitally
filter some signals, making the filter bandwidth a large
fraction of the sampling frequency makes it easier to build
a sharp-skirted filter. Reduction of the sampling rate is
usually referred to as decimation.

Decimation is normally done by integer values—although
it doesn’t have to be—and is the same as resampling the
signal at the lower rate. The resampled signal has a spec-
trum repeating at intervals of the lower sampling frequency,
and so we have to reduce the bandwidth to less than half this
value to avoid the aliasing that would destroy information.

The decimation filter, operating at the higher sampling
rate fj,, eliminates components above f;,;/2 so that aliasing
won’t occur after the rate reduction. The output signal can
be processed at the f,,; rate, which requires less time. We
see, though, that in sampling our signal at the lower rate,
we’re going to have to either average or discard some of the
input samples.

When we filter the signal at the higher rate, then re-
sample at the lower, it turns out it’s legitimate to just dis-
card the unneeded samples during decimation. No infor-
mation about the input signal will be lost since aliasing is
avoided. So, why compute these output samples when we’re
only going to throw them away? We'll calculate only the
ones we're going to keep, and this is equivalent to running
the decimation filter at the lower sampling rate. This box-
car technique is typical of those used by DSP designers to
save time and effort.

Increasing the Sampling Rate: Interpolation

While a low sampling rate is pleasant for the reasons
outlined above, it may cause difficulties when it’s time to
convert signals back to analog. The alias products aren’t
far above the desired signals, and are therefore difficult to
filter out. The solutionis toincrease the sampling rate, and
hence the frequencies of the alias products, using the pro-
cess of interpolation.

We usually do this by an integer factor, although again,
we don’t have to. While there may be advantages to chang-
ing the sampling rate by other rational factors, such as
3/2, we're after an arrangement that solves the aliasing
problem with a minimum of processing. In most cases, a
doubling or tripling of the rate is sufficient to allow a rea-
sonable anti-aliasing filter to be constructed.

To double the sampling rate, we’ll insert additional
samples with a value of zero between the existing samples.
An interpolation filter is required, using the zero-inserted
data as its input. It is a low-pass, operating at the higher
sampling rate, which removes the alias components due to
the lower sampling rate.

We've seen some properties of sampled signals and
learned how the sampling theorem can be used to our ad-
vantage in designing a DSP transceiver. We've also seen
the potential trade-offs that selection and conversion of
sampling rates present. Next, on our path toward acquain-
tance with the important DSP methods, a thorough under-
standing of digital filtering is in order.



Digital Filters

The ability to construct high-performance filters is prob-
ably the most important reason for using DSP in radio
transceivers. An expensive crystal or mechanical filter
with a single bandwidth can be replaced by a set of supe-
rior digital filters, which offer as many bandwidths as the
associated memory can support.

We can build digital filters that have linear phase re-
sponse, which is very difficult in the analog world. This can
be important for certain data modulation modes. Once the
filter is designed, each unit is identical to the next—no
alignment is necessary! Finally, filter shapes and re-
sponses that are impractical in the analog world can be
easily implemented in DSP because there are no produc-
tion variations.

Infinite-Impulse-Response (IIR) Filters

IIR filters are notable for the presence of feedback, which
finite impulse response (FIR) filters do not have. For this
reason, [IR filters are usually designed by converting tra-
ditional analog filter responses, such as Chebyshev and
elliptical. IIR filters can have much sharper transition re-
gions than FIR filters (for the same number of multiplica-
tions), but they bring with them the nonlinear phase re-
sponses of their analog brethren. They are much more
susceptible to overflow problems, and are not necessarily
unconditionally stable. They are also prone to limit cycles,
low-level oscillations sustained by inaccuracies in numeri-
cal representation.

Designers can attempt to compensate these unwanted
traits, but they may find that the resulting computational
load isn’t worth it. Nevertheless, we shall describe the
synthesis and use of IIRs, as they have their places in
modern radio development.

The transfer function of an analog Chebyshev low-pass
filter can be written as the ratio of a constant to an nth-
order polynomial:

K
2 (Eq 31)

s = Z =
s"+a;s" T+ a;s" 2 4 4,

Tables in the literature, such as Zverev, list the values
of the coefficients, a, which are related to the cutoff fre-
quency and used to derive actual component values for the

filter. The low-pass design can be transformed to band-pass
or bandstop response. Two popular methods exist for de-
riving the digital transfer function from the analog trans-
fer function. These are known as the impulse-invariant
method and the bilinear transform method.

The impulse-invariant method assures that the digital
filter will have an impulse response equivalent to its ana-
log counterpart, and therefore the same phase response.
Problems arise, though, if the bands of interest are near
half the sampling frequency. The digital filter’s response
can develop serious errors in this case. Because of this, the
impulse-invariant method isn’t as good as the bilinear
transform method.

The bilinear transform method makes a convenient sub-
stitution for s in Eq 31 above, and the filter output comes
out looking like:

L-1 L-1
Yn= ZOpXn g~ LBrYn s (Eq 32)
k=0 k=1

This filter has L zeros and L — 1 poles.

The block diagram of such a filter for L = 5 is shown in Fig
11. Each box marked “Z-1”is a one-sample-time delay. Feed-
back is evident in the diagram: The paths involving coeffi-
cients labeled §3 loop back and are added to the signal path.

This direct form equation can be factored into 2-pole sec-
tions, and implemented in cascaded form. For each section:

2 2
In =[ Yoagxy g - EB%yé_kj (Eq 33)
k=0 k=1

The output of each section serves as the input to the next.
This configuration requires a few more multiplications than
the direct form, but is less prone to instability and limit-cycle
problems when proper pole-zero pairing is used. Additional
information about IIR filters can be found in the literature.

Finite-Impulse-Response (FIR) Filters

This digital filter is by far the most popular for SSB use
because of its linear phase response. The transfer function
of an FIR filter has only zeros, so to implement one, we
eliminate the poles and compute only the left half of Eq 32.
The output then takes the form:

L-

1
In= Zheni (Eq 34)

Signal 7-1 . 7-1 " 7-1 . 71
Input
h(0) h(1) h(2) h(3) h(4)
N
Filter
Output

Fig 12—Block diagram of an FIR filter for L = 5.
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where 4 is the set of L coefficients. The coefficients repre-
sent the impulse response of the filter, and the filter is said
to have length L.

The block diagram of such a filter for L = 5 is shown as
Fig 12. The set of input registers holding delayed samples
of x is just a tapped digital delay line, and for this reason,
this filter can be said to have 5 taps. Since the output de-
pends only on past input values, the filter can be said to be
a causal process.

Normally, the impulse response has a symmetry about
center, and it turns out this is enough to ensure that no
differential or group delay distortion is produced. Since
there is no feedback, the filter is unconditionally stable.
Almost any frequency response can be generated if enough
taps can be used. Many excellent CAD programs are avail-
able to design digital filters, relieving us of the burden of
generating coefficient sets.

Numerical Accuracy Effects in FIR Filters

In general, adding more taps sharpens the transition re-
gions in the frequency response. In addition, accurate fre-
quency and phase responses require a large number of taps.
Because it is truncated at both ends, the finite coefficient set
is only an approximation of that required for the exact re-
sponse we want. Some error in the result must be tolerated.

After Rabiner and Gold, the number of taps required can
be estimated using:

-7 10 log(6;65)-15

G
fs

where §; is the allowable passband ripple, &y is the
stopband attenuation, fris the transition bandwidth, and
f. the sampling frequency. This assumes, of course, enough
bits of resolution are used to achieve the required accu-
racy. In actual practice, filters of over 100 taps are used to
realize shape factors of less than 1.14.

When computers are used to design FIR filters, coeffi-
cients can be represented to the full accuracy of the pro-
gram—usually in floating-point format with 12 or more
decimal significant figures in the mantissa. Real imple-
mentations ordinarily don’t achieve this accuracy, as we’re
typically limited to 16 bits in an embedded DSP design.
The truncation of coefficients and data degrades the re-
sponse and, of course, sets the dynamic range.

We know that the product of two 16-bit numbers is a
32-bit number, so we need at least that many bits in the
final accumulator to avoid losing accuracy. Another point
of interest: While the delay through the filter isn’t depen-

(Eq 35)

Signal +
Input Z-n Notch
Xt Output
Delay _
Lm0
o~
—~
BPF

Fig 13—Block diagram of digital notch filter.
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dent on frequency, the absolute value of that delay can be
quite large. In fact, it is equal to:

Let
Trir == $

(Eq 36)

When we get around to using these filters in our design,
we’ll want to consider the effects of these delays.

Fixed-Point Mathematics and Scaling Problems

The typical DSP microprocessor is a 16-bit machine us-
ing fixed-point math. This means numbers are represented
internally as signed fractions between -1 and 1 in 2s
complement format. The most significant bit (MSB) repre-
sents the sign of the number, and the 15 least significant
bits (LSBs) the magnitude—or the complement of the
magnitude for a negative number. In hexadecimal format,
$7fff is the largest positive number and represents 1-2-15,
while $8000 is the most-negative number, and represents
(~1). This is a convenient format, since the product of two
fractions is always another fraction! When we start adding
the fractions together, however, (as in our FIR filter above)
we may generate a number whose magnitude is greater
than unity—a result known as overflow.

Most DSPs using 16-bit data and coefficients have final
accumulators with at least 32 bits. A trade-off exists be-
tween the possibility of overflow—which is catastrophic—
and the loss of accuracy in the LSBs, via truncation during
operations. Especially in FIR filters with sharp transition
regions, and under certain input conditions, the output can
exceed +1. The worst-case output can grow as large as the
sum of the absolute value of all the coefficients:

L-1
Ymax = kZO lhkl (Eq 37)

We must scale either the data or the coefficients by the
reciprocal of this factor to ensure against overflow.

At the small-signal end of things, the bit-resolution of
the system determines the dynamic range because of the
presence of quantization noise, just as in the case of ADCs
or DACs. It is computed almost the same way. Its normal-
ized amplitude is:

2—(b+1)
Van = 73 (Eq 38)

where b is the number of bits used, internally, to represent
numbers.

Truncation of numerical results is another form of quan-
tization noise, also computed in the same way. If each of
the L multiplications is truncated, then the noise ampli-
tude from this source is:

2—(b+1)L

V3
It’s interesting to note that while truncation of the coef-

ficients affects the response characteristics of the filter, it
doesn’t contribute to the noise in the output.

(Eq 39)

trunc =

Hilbert Transforms

We know that to build a DSP radio, it’s convenient to use
phasing methods as discussed previously. We need a way to
shift the phase of signals by 90°. For a single frequency, this
is easy: We just insert a delay of one-quarter cycle. Over a
range of frequencies, though, an FIR structure is required to
obtain a frequency-independent phase shifter. We'll call this
a Hilbert transformer.

Coefficients for a Hilbert transformer can be generated



by CAD programs, and optimized for the bandwidth of in-
terest. As noted above, the coefficient set will be symmetri-
cal about center. The phase response is, of course, a
straight line. A nice property of Hilbert transform impulse
responsesis thatifthe total number of tapsis odd, the even-
numbered coefficients are zero. This cuts our number of
calculations in half.

Also, to minimize the computational load, let’s see if we
can somehow avoid having a separate Hilbert transformer
in our phasing-method implementation. We’ll attempt to
build a pair of band-pass filters, with the frequency re-
sponse we need and whose phase responses are 90° differ-
ent from each other. These can then be used directly in our
receiver/exciter to create and operate on analytic signals.

Analytic Filter-Pair Synthesis

The frequency translation theorems we explored above
can be used to advantage in creating our pair of filters. If
we start with a low-pass filter having impulse response, A,
and frequency response, H,, multiplying the impulse re-
sponse by a complex sinusoid

/90 = cos wyt + jsin wyt (Eq 40)

results in two sets of coefficients, one for the real part, and

one for the imaginary part:

hi, = hycoswpt

hg, = hysinwgt (Eq4D)
The frequency response of either one of these filters is

given by:

H

w-wy

)+ H
2

w+w,)

H,=

(Eq 42)

which is a band-pass filter centered at wy. The first filter
in Eq 41 has a phase response 90° different from the sec-
ond. The frequency translation theorem works on the re-
sponses of filters just as well as it does on real signals!
To perform this transformation on the L coefficients of
the initial low-pass filter, we calculate new coefficients:

ForO<k<L-1,

hIk = hkcoswo[k - % + éjts OR

(Eq 43)
he, = hysino (k-£+ijt

Qs k 0 9 9/

We can implement an IF shift in our receiver design sim-
ply by altering the value of @y, and computing the new coef-
ficients. We can alter the transmitter’s frequency response
by convolving the impulse response of our analytic filter pair
with that of a filter having the desired characteristic. It’s
evident that FIR filters yield flexibility beyond that of any
analog technique.

Digital Notch Filters

The other type of filter of interest to us is the notch,
designed to remove a single frequency. Note that such a
filter can be constructed by subtracting the output of a
narrow band-pass filter from the broadband input, as
shown in Fig 13. We include a delay of
Leg
= (Eq 44)
in the broadband input to compensate for the delay through
the band-pass filter, whose length is L.

An unusual type of notch filter has been described by

z7" =

input

Notch

dy

() Output
€t

BPF

cos( Wt +¢)

{ output
Yt

sin( Wt +9)

LMS
Algorithm

Fig 14—Block diagram of adaptive, manually tuned notch filter.
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Widrow and Stearns, in which the number of taps in the
band-pass filter is minimized. In fact, they were able to
show that only two taps were needed for each frequency to
be notched! DSP designers love this, since the amount of
computation is almost nil. In describing this notch filter,
we’ll introduce the concept of the adaptive interference can-
celer, and we’ll touch on some of the theory involved in
adaptive signal processing.

The Adaptive, Manually Tuned Notch Filter

The situation is this: We want to copy a broadband signal,
such as an SSB voice signal, and suddenly, a dreadful carrier
appears in the passband! Our notch filter will remove it, and
we’ll have complete control over the notch width, along with
a depth limited only by the bit resolution of our system.

Dr. Widrow discovered that one can build a filtering sys-
tem to minimize repetitive signal energy by altering the
filter coefficients “on the fly” using a certain algorithm.
Known as the least-mean-squares (LMS) method, it de-
scribes a way to adjust FIR filter coefficients over time to
remove an undesired tone in the input! A reference signal
is used, which is of the exact frequency of the interfering
tone. The algorithm then forms a band-pass filter that is
subtracted from the broadband input to create the notch.

The block diagram of this system is shown in Fig 14. The
broadband input is called d;, and the reference input is a
pure cosine wave:

x; = A cos(wgt + ¢) (Eq 45)

The cosine wave is sampled and fed to the input of one
multiplier. It is also phase-shifted by 90° to produce a sine
wave, which is fed to the second multiplier. The multiplier
outputs are then added, as in a regular FIR filter, to form
the band pass output. This output y, is then subtracted
from the broadband input signal to produce the notch out-
put, e;. Note that the band pass output is also available at
no additional overhead.

While the initial values of the coefficients 2; and Ay are
unimportant, the procedure for updating them is defined
by the LMS algorithm as:

Ry(er1) = Pae + 200021,
Ro(tr1) = hae + 21ier %,

where 0 < it < 1, and the sampled reference inputs are:

(Eq 46)

x7; = A cos(wpt + ¢)

X9, = A sin(coot + ¢) (Eq 47)

In the final analysis, it can be shown that as the refer-
ence inputs are sinusoidal, the system is linear and time-
invariant for the output e,. Several interesting points fol-
low about the characteristics of this notch.

Adaptive Notch Filter Properties

First, the 3 dB bandwidth of the notch can be shown to be:
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radians/second. The Q of the filter is simply the center

frequency divided by the bandwidth:

BW =

(Eq 48)

-9
Q=5 a7 (t)

Therefore, we have control over the bandwidth by varying
the factor, u, and the amplitude of the reference signal, A,
in the equation. The depth of the null is, in general, superior
to that of a fixed filter because the algorithm will maintain
the correct phase relationship for ideal cancellation, even if
the reference frequency is changing slowly.

Each additional tone to be notched creates the need for two
more tapsin the adaptive filter. Any noise in the input causes
us to add more taps to achieve sufficient accuracy. More de-
tail of adaptive processing will be provided in future articles,
and still more details may be found in the references listed.

(Eq 49)

Summary

DSP microprocessors are optimized for the multiply-and-
accumulate (MAC) operation that forms the backbone of
digital filtering and other DSP algorithms. We've discov-
ered that FIR filter structures are definitely the way to go
when designing DSP subsystems, and that quite a few
nuances of theory make life easier.

In Part 2 of our review of DSP techniques, we’ll look at
an actual transceiver scheme, and examine how the strat-
egies we’ve learned resultin an efficient, high-performance
design.
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