
Jan/Feb 1999 19

Are you tired of requesting your favorite ham
software developer to support your favorite rig or device?

By Lawrence G. Dobranski, VA3LGD/VE3TVV

14 Sandhead Terrace
Nepean, Ontario, K2J 1L4
va3lgd@amsat.org

The Need for Standard
Application-Programming

Interfaces (APIs) in
Amateur Radio

The Problem
Some recent discussions on Internet

e-mail reflectors supporting some of
the popular contesting and logging
software reinforced the lack of pro-
gramming standards within the
Amateur Radio community. When a
new radio or other product is released,
this lack of standardization causes de-
velopers to scramble; they must
modify their programs to interface to
the new equipment. Many software
developers do not provide Amateur
Radio software as their primary occu-
pation. Finding the specifications, get-
ting access to the equipment and veri-

fying the interfaces can be a continual
and significant hardship.

The Solutions
Two solutions exist for this problem.

The first is to have ham-radio equip-
ment manufacturers develop stan-
dard interfaces and command sets.
Given the ham-radio equipment man-
ufacturers’ inability to agree on the
wiring of the microphone connector,
the possibility of getting a standard
command set developed, approved and
used is unlikely.

The second solution is based on a
similar problem that has already been
solved in the software-development
world. Today’s operating systems pro-
vide many features to application de-
velopers. The features and services
are usually accessed through an appli-

cation-programming interface (API).
APIs provide a set of function calls
that application developers use. The
software that implements these calls
performs the lower-level functions of
the device or operating system.

What is an API?
To understand what an API is, let’s

review how one works through an
example. Most contesting and logging
programs use the computer inter-
face on Amateur Radio transceivers.
Through this interface, they read and
set frequency, band and other infor-
mation. To set the radio’s frequency,
the program must convert the data to
a numerical format the radio can un-
derstand, format the data within an
appropriate command structure and
send the result to the radio. [Acknow-

mailto:va3lgd@amsat.org

20 QEX

ledgment from the transceiver may
also be required.—Ed.] Similar opera-
tions are performed to set or read
other rig data. Today, these programs
must support many different rigs from
many different manufacturers, each
with its own command set and data
format. The protocols may be quite
different, and the command sets mu-
tually exclusive.

Instead of the application software
composing the radio command di-
rectly, it might call a standard soft-
ware function instead—HAM_API_
Rig_SetFrequency(x)—where x is the
desired frequency. This API call is
translated by a radio-specific library
into the radio’s command format.
When new radios are released, a new
radio-specific library is developed,
rather than modifying the application
software. With the addition or update
of the new library, all existing appli-
cations that use the HAM API would
then be able to interface to the radio.

Where in Amateur Radio Would
We Use Them?

Amateur Radio is becoming increas-
ingly computerized. In many of our
shacks, computers are interfaced to
our rigs, TNCs, rotators, voice keyers,
CW keyers, antenna switches, GPSs,
etc. When software is developed to aid
the amateur, it must be built to sup-
port specific equipment. If Amateur
Radio APIs existed, then we would
only need to develop specific libraries.
The application would no longer have
to be modified.

Table 1 lists a sample of the API
functions that could be developed for
amateur use.

Two Sample APIs
To see the effectiveness of APIs,

Tables 2 and 3 define samples that
might be used for rig control and in-
terfacing to a PacketCluster. The style
used in the definition depicts the API
as a set of functions. It could be defined
in terms of object-oriented-program-
ming constructs as well.

How Do We Develop Them?
If this approach to computer control

of amateur equipment is acceptable,
interested amateurs must develop
working groups to author the respec-
tive APIs. These working groups could
discuss their development—using the
Internet, for example—and author
the various libraries. Once an API is
developed, it would not be considered
a reference standard until two unre-
lated applications use the API to con-
trol two different devices. A test suite
is then developed to verify that future
API implementations meet the stan-
dard. This conformance test ensures
the user that the API implementation
will work with their application.

Before API standard development
begins, a standard naming convention
for Amateur Radio APIs should be
developed. For example, a proposed
naming convention is as follows:

HAM_API_xxx_yyyy(). xxx is the
API name (ie, rig, tnc, rotor) and yyyy
is the function name. Variables and
constants are named in a similar way.

Table 1
Proposed API Classifications

Amplifier Control
Antenna Switch
Call book interfaces
CW Contest Keyers
Digital Voice Keyers
GPS Data
PacketCluster
Rig Control
Rotor Control
Satellite Trackers
TNC Control

Table 2
A Sample API for Rig Control

Function Description
HAM_API_Rig_getName() Returns the rig name and model number
HAM_API_Rig_getCaps() Returns—in a standard data structure—information about the rig’s capabilities: mode,

frequency range, output power, etc
HAM_API_Rig_selectRig() Sets the active rig for subsequent commands. Use when more than one rig is

controlled by the computer
HAM_API_Rig_getSettings() Returns—in a standard data structure—current rig settings: frequency, mode, split, etc
HAM_API_Rig_getFrequency() Returns the rig frequencies
HAM_API_Rig_setFrequency() Sets the rig frequency
HAM_API_Rig_setEventFunction() Sets the function to be executed if a rig generated event happens, ie, frequency

changed from rig’s front panel
HAM_API_Rig_getEvent() Returns the event that caused the setEventFunction to be activated
HAM_API_Rig_setRIT() Sets the receive incremental tuning (RIT)
HAM_API_Rig_setXIT() Sets the transmit incremental tuning (XIT)
HAM_API_Rig_setMode() Sets the rig’s mode
HAM_API_Rig_getMode() Get the rig’s mode

1Linux Application Development, by Michael
K. Johnson and Erik W. Troan, published
by Addison Wesley Longman Inc, 1998.

Linux Application Development1 de-
scribes Linux’s shared libraries and
how to implement them. Each Ham
API device-specific library would be
implemented as a shared library.

Windows
Win16 (the formal name for the Win

3.1X environment) and Win32 (Win 9X
and NT) provide support for run-time
libraries. In the Windows environ-
ment, these libraries are called Dy-
namic Link Libraries (DLLs). Their
file name extension is “.dll”. A good
portion of the Windows operating sys-
tem is implemented in DLLs. Each
Ham API device-specific library would
be implemented as a DLL.

DOS
The Microsoft DOS operating envi-

ronment presents an interesting
challenge when trying to implement

How Do We Implement Them?
Linux

Linux and all UNIX derivatives sup-
port run-time libraries. A chapter in

Jan/Feb 1999 21

standard libraries supporting the API.
No one standard run-time-library
module has emerged. Standard link-
ing libraries are used at compile and
link time, but often, no real run-time
library module exists. Instead, soft-
ware developers have made use of the
architecture of the Intel iAPX-86 fam-
ily, for which DOS was developed.
They use the same method by which
DOS communicates with underlying
basic input/output system (BIOS)
firmware and software; that is, via
software interrupts and terminate-
and-stay-resident (TSR) techniques.

The Intel iAPX-86 architecture pro-
vides support for up to 256 software
interrupts. Like their close cousins,
hardware interrupts, software inter-
rupts are invoked by asserting an in-
terrupt request (IRQ). Instead of be-
ing generated via hardware, software
interrupts are requested through soft-
ware instructions. For example, DOS
provides a function for printing a char-
acter to the standard output device. It
is invoked by the following fragment
of iAPX-86 assembly language code:
mov al,32 ; move an ASCII 32 (space)

; Into the <AL> register
mov al,dl ; in <DL> for DOS call

Table 3
A Sample API for Interfacing to a PacketCluster

Functional Description
HAM_API_Packet_Cluster_login() Login in to the PacketCluster
HAM_API_Packet_Cluster_setName() Set the operator’s name
HAM_API_Packet_Cluster_setQTH() Set the operator’s QTH
HAM_API_Packet_Cluster_doSetCommand() Sends a set command to the PacketCluster. The command is contained

in a standard data structure that also contains the result of the command
HAM_API_Packet_Cluster_doDirCommand() Sends a Dir command to the PacketCluster. The command is contained

in a standard data structure that also contains the result of the command
HAM_API_Packet_Cluster_doShowCommand() Sends a Show command to the PacketCluster. The command is contained in

a standard data structure that also contains the result of the command
HAM_API_Packet_Cluster_delete() Sends a command to delete a mail message
HAM_API_Packet_Cluster_send() Sends a mail message
HAM_API_Packet_Cluster_announce() Sends an announcement. The type of announcement is contained in

standard data structure
HAM_API_Packet_Cluster_quit() Sends the command to log off the node
HAM_API_Packet_Cluster_dx() Announces a DX station
HAM_API_Packet_Cluster_reply() Reply to a read message
HAM_API_Packet_Cluster_talk() Enter talk mode
HAM_API_Packet_Cluster_type() Enter a command to display a file. File contents are returned in the data structure
HAM_API_Packet_Cluster_upload() Uploads a bulletin file
HAM_API_Packet_Cluster_wwv() Gets the solar flux
HAM_API_Packet_Cluster_read() Sends a command to read a message into the data structure.

mov ah,2 ; destination in standard output
int 21h ; execute the DOS library call

The HAM_API library can be devel-
oped in a similar way. A suitable, un-
used interrupt in the DOS architec-
ture would have to be chosen. To allow
portability across machines, this
value should be set by a SET command
at boot time. For example, the AX reg-
ister pair would provide 256 different
API families, each with 256 different
functions. The API TSR would be a
dispatcher that loads and invokes spe-
cific APIs as required, as configured by
SET commands.

Once the API is completed, volun-
teers would develop reference imple-
mentations for use by application de-
velopers. If these are successful, the
working group develops conformance-
testing criteria to certify that API
implementations meet the standard.
The ARRL then publishes the standard.

After publication, the working group
convenes to maintain the standard on a
regular basis. As APIs are imple-
mented, lessons will be learned and
improvements made in the functions
and descriptions.

Where Do We Go from Here?
To ensure that this approach is suit-

able for Amateur Radio, discussion is
needed. Comments and observations
are needed from application develop-
ers, product developers and amateurs
on the feasibility of this approach.
Once agreement on its viability is
reached, ARRL-sponsored working
groups should be created to develop
the respective API descriptions. These
working groups need not meet physi-
cally to develop the standard, but can
use the Internet and Amateur Radio
for communications.

Lawrence G. Dobranski, VA3LGD,
has a BS (with honors) in Engineering-
Physics from Dalhousie University in
Halifax, Nova Scotia, and a MS (Engi-
neering) in Physics from Queen’s Uni-
versity in Kingston, Ontario. He is pres-
ently a Senior Consultant with the
EXOCOM Group of Companies in Ot-
tawa, Ontario, specializing in Informa-
tion Technology Security. Lawrence has
been involved in the standards develop-
ment of APIs for Information Technol-
ogy Security Services. Lawrence’s inter-
ests lie in the technical side of ham ra-
dio. He operates mainly HF mobile, with
some dreams of serious contesting.

