

1

WINMOR Protocol Specification (Beta Release)

Revision: 1.0.6 Dec 11, 2009

Rick Muething, KN6KB, AAA9WK

1.0 Scope:
This document describes the preliminary WINMOR sound card protocol at the physical
and data link levels. It is the complete specification of the WINMOR protocol. It does
not address higher level protocol layers. The WINMOR protocol is not proprietary and is
released to the public domain. This document describes the 500 Hz and 1600 Hz
bandwidth modes using 93.75 Baud (PSK) and 46.875 baud FSK modulation.

2.0 Purpose:
The intent of this document is two fold:
a) To serve as a working document during protocol development and testing
b) To serve as a template to allow others familiar with the art to build compatible

drivers that support the data link protocol layer.

3.0 Definitions and Syntax:
Several specific terms and syntax are used in this document:

Definitions: A term or item is defined using the := symbol. This symbol can be
read as is defined as

Implementation directives: These are key words that indicate how an item is to be
implemented or recommend a method of implementation. They are always indicated by
capitalized italic words. These are:

MUST := this must be followed to implement the protocol
MUST NOT := this must not be done to implement the protocol
SHOULD := this is the recommended way to implement the protocol
MAY := this is alternative way to implement the protocol.
The syntax above is always used to distinguish between the common use of the

same words.
& is used to indicate catenation. E.g. Frame := Pilot & Data

4.0 Overview of the Protocol:
The WINMOR protocol is intended to be used for sending messages and binary

data error free over a HF radio link. It is a Selective Repeat Automatic Retry reQuest
(SRARQ) protocol where the Information Receiving Station (IRS) acknowledges receipt
of the data to the Information Sending Station (ISS). Normally during a connection
session the IRS and ISS exchange roles multiple times. The protocol is designed to
handle the type conditions normally encountered in amateur radio transmission.

2

Specifically:

Generally low S/N levels
Non channelized frequencies with interference
Poor to moderate propagation conditions including poor multipath environment.
Frequency offset (between send and receiver) and drift
Sound card sampling rate error and drift

The WINMOR protocol uses basic OFDM (Orthogonal Frequency Division
Multiplexing) modulation and a number of modulation modes and error correction
schemes to adapt to changing channel conditions. There is currently 2 operating
bandwidths of 500 and 1600 Hz (@ 26 db below peak power output:
 500 Hz BW 2 carriers 46.875 Baud 4FSK or 93.75 baud PSK using TCM 4PSK,
8PSK or 16PSK

1600 Hz BW 8 carriers 46.875 Baud 4FSK or 93.75 baud PSK using TCM 4PSK,
8PSK or 16PSK

WINMOR is not optimized for keyboarding or chat mode applications though this may
be possible with the appropriate user client.

4.1 Error Correcting Mechanisms
WINMOR employs a number of powerful error detecting and correcting mechanisms
which are specifically adapted to the types of errors found in HF communications using
popular FSK and PSK modulation schemes. This section outlines the error correction
approach used.

Normally error correction is done in terms of layers for improved effectiveness and
efficiency. The following briefly describes these layers and how they are used in
WINMOR.

4.1.1. Outer Sumcheck Layer
This layer applies a standard CRC sumcheck calculation on the corrected data. It
insures to a very high probability that the corrections are indeed correct and the data
matches that which was transmitted. For Connect request frames, ID frames and all data
frames a 16 bit CRC Polynomial of x^16 + x^12 +x^5 + 1 is used. For short
coded control and ACK frames an 8 bit CRC polynomial of x^8 + x^7 +x^3 +
x^2 + 1 is used.

4.1.2 Reed Solomon Layer
Reed-Solomon (R-S) FEC appends parity blocks (characters) to an uncoded message
which are used to detect and correct errors. The total message size (with parity) must be
equal to 2n 1 where n is the character size in bits. WINMOR uses a single 8 bit
character size. Shortened R-S codes (where sender and receiver agree a priori to the
message size and not transmit the fill part of the message) are used as is typical in
many R-S applications.

3

For data frames the Reed Solomon layer is actually implemented in two formats. The first
format is what is called weak R-S where a relatively few parity characters are appended
to the message. This weak R-S format is usually sufficient to correct the frame under
most conditions. If a data frame must be repeated (reciever did not ACK) then the second
strong R-S format is used which transmits just the parity charactes of a more robust R-S
code. These parity characters are then used along with the prior sent data (ignoring the
weak R-S Parity bytes) to attempt to correct the original message part of the first weak
R-S format. These two formats are alternated with each repeat of a data frame.

4.1.3 Viterbi Encoded TCM Layer
The next layer uses what is called Viterbi Encoded Pragmatic Trellis Coded Modulation.
(See appendix B) This is used on all PSK modes but is not used on FSK. This scheme
reaches to within about .2 db of the theoretical coding gain of the best similar length
Trellis codes but uses a standard Viterbi encoder/decoder (NASA Voyager R=1/2, K=7).
In TCM a single bit is added to each PSK symbol doubling the number of phases. The
gain provided by the code exceeds that lost by the tighter spaced phase constellation by
typically about 3 dB giving essentially a 3dB power improvement with no change in
payload throughput or bandwidth. The layered use of the Viterbi inner encoding and R-S
outer encoding is common in many advanced error correcting schemes.

4.1.4 Memory ARQ
The final layer used is what is commonly called memory ARQ (Automatic Retry
reQuest). If decoding on the received data using the above layers is not sucessful
Memory ARQ averages the received demodulated (soft) symbol values (frequency or
phase/magnitude) on a symbol by symbol basis and attempts a decode (using the above
layers) on the averaged values. This can be effective in very weak signal conditions.
Memory ARQ is done only for data frames and is applied to both the weak R-S and
strong R-S data formats.

5.0 Physical Layer Protocol Description:
The protocol requires the following hardware:

1) Radio connection. This SHOULD be a single sideband (SSB) transceiver
capable of transmitting Upper sideband low distortion audio in the range of
600-2400Hz. When SSB transmission is used it MUST always done using
Upper Sideband (USB). Other modulation schemes (e.g. NBFM) MAY be
used in some applications.

2) Radio Frequency accuracy: If SSB modulation is used the radio MUST be able
to be set to within +/- 100 Hz of a specific (published) frequency.

3) Frequency Drift: If SSB modulation is used the radio frequency MUST have a
short term drift of < .5Hz/Second over any 5 second period.

4) The transceiver MUST have a Receive to transmit switching time of < 100 ms
and a Transmit to Receive switching time of < 100 ms

5) The audio for the protocol MAY be generated using a standard PC sound card
and appropriate software.

6) On Radios with built in sound card interfaces (e.g. Icom 7200) it is possible
to use the radio s built in sound card to send and receive SSB audio.

4

7) The sound card capture device (receiving data) MUST be able to support a real

or interpolated sampling frequency of 48000Hz +/- .1% (+/-1000 ppm)
8) The sound card playback Device (transmitting data) MUST be able to support

a real or interpolated sampling frequency of 12000 Hz +/-.1% (+/- 1000 ppm)
9) The processor or PC used to implement the protocol MUST be able to

complete the decoding of any frame and respond with the appropriate
response in 500 ms or less. (this is currently estimated to equate to a
Pentium/Celeron class processor of 500 MHz or above) It may be possible to
reduce the PC requirement in the future at the expense of session throughput.

6.0 Data Link Layer Protocol Description:

6.1 Definitions:
Information Sending Station (ISS) := the station currently sending data to the other
station. The ISS MUST only send data or control frames.

Information Receiving Station (IRS) := the station currently receiving data or commands
from the other station. The IRS MUST only send Ack or control frames.

Carrier := one of the modulation carriers. There are either 4 or 6 modulation modes
supported depending on the desired session bandwidth:

1) 500Hz BW
a. Modes: 4PSK TCM, 8PSK TCM, 16PSK TCM
 2 Carriers at 1406.25 Hz and 1593.75 Hz
b. Mode 4FSK
 2 groups of 1of 4 Carriers. (2 carriers active simultaneously)

Group 1: 1312.5, 1358.375, 1406.25 and 1453.125 Hz
Group 2: 1546.875, 1593.75, 1640.625 and 1687.5 Hz

2) 1600 Hz BW
a. Modes: 8 carrier 4PSK TCM, 8PSK TCM, 16PSK TCM
 8 Carriers at 843.75, 1031.25, 1218.75, 1406.25, 1593.75,
1781.25, 1968.75 and 2156.25 Hz
b. Mode 8 carrier 4FSK
 8 groups of 1of 4 Carriers. (8 carriers active simultaneously)

Group 1: 750.0, 796.875, 843.75 and 890.625 Hz
Group 2: 937.5, 984.375, 1031.25 and 1078.125 Hz
Group 3: 1125.0, 1171.875, 1218.75 and 1265.625 Hz
Group 4: 1312.5, 1358.375, 1406.25 and 1453.125 Hz
Group 5: 1546.875, 1593.75, 1640.625 and 1687.5 Hz
Group 6: 1734.375, 1781.25, 1828.125 and 1875.0 Hz
Group 7: 1921.875, 1968.75, 2015.625 and 2062.5 Hz
Group 8: 2109.775, 2156.25, 2203.125 and 2250.0 Hz

c. Modes: 2 carrier 4PSK TCM
 2 Carriers at 1406.25 Hz and 1593.75 Hz

d. Mode 2 carrier 4FSK

5

 2 groups of 1of 4 Carriers. (2 carriers active simultaneously)

Group 1: 1312.5, 1358.375, 1406.25 and 1453.125 Hz
Group 2: 1546.875, 1593.75, 1640.625 and 1687.5 Hz

Pilot := Leader of the Frame. The Pilot is used to enable rapid identification of a
transmission, to DSP tune the receiving station accurately, to establish symbol and frame
sync and to indicate the frame type. The single carrier of 1500.00 +/- .1% is sent at full
modulation strength (Maximum PEP value) to maximize S/N during the Pilot interval

Pilot := Ptun & Pfsync & Pfty
Ptun is the tuning pilot. Pfsync is the frame sync identifier. Pfty is the frame type

identifier. Ptun & Pfsync are always sent using single carrier DBPSK modulation with a
root raised cosine envelope encoding for robustness.

Ptun := 24 adjacent symbols of the pilot carrier (1500.0 Hz) alternating phase on each
symbol. The tuning signal MAY be extended up to 16 symbols (170.66 ms) for
transceivers with slow R>T switching or slow VOX PTT response if using VOX.
Pfsync := Frame sync symbol consisting of one symbol of the same phase as the
immediately preceding Ptun symbol. The Pfsync symbol serves as the frame sync symbol
for the following Ptfy symbols.
Pfty := 4 sequential 4FSK symbols. These 4 symbols encode the 4 bit frame type with an
extended 8,4 hamming code.

Frame := a packet of information. A frame is composed of a Pilot & Data. Frames are
identified by the syntax Fxyz where xyz is the frame descriptor.

Symbol := A symbol is one modulation burst of data. The symbol rate is 93.75 symbols
per second (baud) +/- .1% for PSK modes (93.75 = 12000/128) . For 4FSK modes the
symbol rate is 46.875 symbols per second (baud) +/- .1% (12000/256) Pilot symbols
consist of a single carrier with a root raised cosine envelope weighted at the maximum
PEP value. Data and control symbols consist of:

1) 2 carrier PSK modulated with a root raised cosine envelope. Each carrier is
weighted 53% of the pilot carrier

2) 2 Carrier 4FSK (one of 4 tones). Each carrier is weighted at 50% of the weight
of the pilot carrier.

3) 8 simultaneous carriers PSK modulated with a root raised cosine envelope.
Each carrier is weighted at 16.7% of the maximum PEP value.

4) 8 simultaneous carriers each 4FSK (one of 4 tones). Each carrier weighted at
14.3% of the maximum PEP value.

(Note: these carrier weightings are combined with limited soft and hard clipping
to reduce the crest factor. The percentages above are subject to change.

 For PSK modes the initial symbol following the Pilot is the reference symbol Sr.
This establishes the reference for the next Differential symbol. The Sr symbol carries no

6

information but establishes the reference phase for each carrier. The reference phase for
each carrier need not be the same as a mechanism of reducing the crest factor. There is no
reference symbol for 4FSK modes.

Byte := the number of contiguous symbols to make one byte. After the frame type data
all frames send an integral number of bytes with a total length determined by the frame
type.

Symbol Modulation: With the exception of the pilot described above all data symbols and
all carriers MUST use the same modulation scheme. The supported schemes MUST
include Viterbi encode Trellis Coded Modulation (Pragmatic TCM) PSK (differential
phase shift keying) and 4FSK.

SessionID := a 2 byte integer Bsid defined as CRC16 (Calling sign & Target call sign)
The session ID dramatically reduces the chances of a session contamination by a remote
non connected but audible rogue signal. The Session ID is used in the computation of the
sum check but is only sent specifically on data frames. Specific encoding example TBD.

6.2 Frame Types:

The following frame types MUST be supported. For Detailed frame parameters see the
spread sheet in Appendix A.

6.2.1 Control frames:
Fcrq Connect ReQuest frame: 2 Car 4FSK = type 0

Sent by the station initiating the connection (Client). Contains call signs of calling
and target stations and 2 byte sumcheck. The session Bandwidth is set by the answering
(Server) station.

Fcrq Encoding:
Fcrq := Pilot & Sr & Bdata & Bsch & Bscl & BRS

Bdata := Calling call sign & Remote call sign. Callsigns are packed
to 12 byte array of 6 bit characters and must be A-Z, 0-9 with an
optional ssid of 0 15. Function FormatCallsToByte is used to
pack the 12 byte array.

Bsch is the high byte of the CRC16 sum check of Bdata

Bscl is the low byte of the CRC16 sum check of Bdata

BRS is the 14 check parity bytes from a shortened RS (255,241)
code correcting up to 7 bytes

Fcrq Total payload (2 carriers) of 28 bytes including CRC16 and RS
correction check bytes and is always sent using 2 carrier 4FSK modulation (2 user
bits per symbol)

FID ID frame: 2 Car 4FSK = type 15
Sent by the station to ID. Contains call sign of sending station and optional Grid 6

character Grid square.The ID frame is sent automatically at 10 minute intervals by the

7

ISS and upon a session end. At session end the ID frame may be optionally followed by a
CW ID.

FID Encoding:
FID := Pilot & Sr & Bdata & Bsch & Bscl & BRS

Bdata := Calling call sign & Grid Square. Callsign and grid square
are packed to 12 byte array of 6 bit characters and must be A-Z, 0-
9 with an optional, The call sign may have an optional ssid of 0

15. Function FormatCallsToByte is used to pack the 12 byte array.

Bsch is the high byte of the CRC16 sum check of Bdata

Bscl is the low byte of the CRC16 sum check of Bdata

BRS is the 14 check parity bytes from a shortened RS (255,241)
code correcting up to 7 bytes

FID Total payload (2 carriers) of 28 bytes including CRC16 and RS
correction check bytes and is always sent using 2 carrier 4FSK modulation (2 user
bits per symbol)

Fccf Coded Control Frame (2 Car 4FSK = type 1)
Handles the following sub types by 1 byte code in the control frame:

Fdrq Disconnect Request (code HFF)
Fidl Idle Code H00
Fbrk Break (sent by the IRS to stop the ISS from sending data and go to
the IRStoISSe state) Code(HAA)
Frps Request Packet Sequence number (sent by the ISS to get the last
correctly sequenced packet from the IRS in preparation for a mode shift.
Code(H11)

Fccf := Pilot & Bcod & Bsc8 & BRS

Bcod is the 8 bit code value 00 - FF
Bsc8 is the 8 bit sum check of Bsid & Bcod
BRS is the parity bytes from a shortened RS (255,249) correcting

up to 3 bytes.

6.2.2 ACK Frames:

Fack := Ack (2 Car 4FSK FEC = type 2)
Handles ACK for all carrier modes

Fack:= Pilot & Back & Bsc8 & BRS

Back is a 8 bit field. The 8 bits correspond to the ACK for each
carrier. The LSbit represents the highest carrier frequency.
Bsc8 is the 8 bit sum check of Bsid & Back
BRS is the parity bytes from a shortened RS (255,249) correcting

up to 3 bytes.

8

(note the Coded control and ACK frames have the same length but

different frame types)

6.2.3 Data frames:
Data frames consists of four modulation schemes each supporting two data types:

1: Data + weak Reed-Solomon FEC
2: Extended Reed-Solomon FEC

(the extended RS code is used to correct additional errors)
Data is first sent as a type 1 data frame (Data + Weak R-S encoding) if the data is not
decoded correctly it is sent again as a type 2 (strong R-S Parity only). This strong R-S
parity is appended to the data portion of the previous Data + Weak R-S Encoding (the
Weak R-S parity bytes are discarded) and a new more robust R-S decode is attempted.
Data frames alternate between Type 1 and Type 2 until there is a successful decode. Data
type 2 is distinguished from type 1 by using the ones compliment of the Session ID.
Some form of data summation (analog memory ARQ) MAY be used to average repeated
Data + Weak R-S or Strong R-S Parity only to improve decoding performance.

Fd16TCM 16PSK Pragmatic TCM
 Encoding for type 1 (Data + weak Reed-Solomon error correction):

Fd16TCM := Pilot & Sr & Bsid & Bpsn & Bbc & Bdata & Bpad & Bsch & Bscl & BRS & B00
Where:

Bsid is the 16 bit Session ID.
Bpsn is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is
reserved)
Bbc is the byte count (the number of bytes in Bdata only)
Bdata is the data bytes (up to 96 bytes)
Bpad is remaining B00 if required to fill Bdata frame if < 96 bytes are used
Bsch is the high byte of the CRC16 sum check per carrier
Bscl is the low byte of the CRC16 sum check per carrier
BRS is the Reed Solomon 20 byte RS weak parity using a shortened RS
code of 235,255 (10 error correcting)
B00 is a one byte fill necessary to complete the 21 bytes due to the 3

bits/symbol
Encoding for type 2 (Extended RS Parity):
Fd16TCM := Pilot & Sr & Bsid & BRSX & B00
Where:

Bsid is the ones compliment of the 16 bit Session ID.
BRSX are the 120 extended Reed Solomon Parity

9

 B00 is a one byte fill necessary to complete the 121 bytes due to the 3

bits/symbol

Data Frames using this modulation mode:
Two carrier 16PSK, 500 Hz BW
Eight carrier 16PSK, 1600 Hz BW

Fd8TCM 8PSK Pragmatic TCM
 Encoding for type 1 (Data + weak Reed-Solomon error correction):

Fd8TCM := Pilot & Sr & Bsid & Bpsn & Bbc & Bdata & Bpad & Bsch & Bscl & BRS Where:
Bsid is the 16 bit Session ID.
Bpsn is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is
reserved)
Bbc is the byte count (the number of bytes in Bdata only)
Bdata is the data bytes (up to 64 bytes)
Bpad is remaining B00 if required to fill Bdata frame if < 64 bytes are used
Bsch is the high byte of the CRC16 sum check per carrier
Bscl is the low byte of the CRC16 sum check per carrier
BRS is the Reed Solomon 12 byte RS weak parity using a shortened RS
code of 243,255 (6 error correcting)

Encoding for type 2 (Extended RS Parity): Fd8TCM := Pilot & Sr & Bsid & BRSX
Where:

Bsid is the ones compliment of the 16 bit Session ID.
BRSX are the 80 extended Reed Solomon Parity bytes only of a strong RS code 175,255
(40 error correcting).

Data Frames using this modulation mode:

Two carrier 8PSK, 500 Hz BW
Eight carrier 8PSK, 1600 Hz BW

Fd4TCM 4PSK Pragmatic TCM
 Encoding for type 1 (Data + weak Reed-Solomon error correction):

Fd4TCM := Pilot & Sr & Bsid & Bpsn & Bbc & Bdata & Bpad & Bsch & Bscl & BRS Where:
Bsid is the 16 bit Session ID.
Bpsn is the Packet Sequence Number (1 to 255 mod 256. PSN 0 is
reserved)
Bbc is the byte count (the number of bytes in Bdata only)
Bdata is the data bytes (up to 30 bytes)
Bpad is remaining B00 if required to fill Bdata frame if < 30 bytes are used
Bsch is the high byte of the CRC16 sum check per carrier
Bscl is the low byte of the CRC16 sum check per carrier

10

BRS is the Reed Solomon 6 byte RS weak parity using a shortened RS
code of 249,255 (3 error correcting)

Encoding for type 2 (Extended RS Parity): Fd4TCM := Pilot & Sr & Bsid & BRSX
Where:

Bsid is the ones compliment of the 16 bit Session ID.
BRSX are the 40 extended Reed Solomon Parity bytes only of a strong RS code 215,255
(20 error correcting).

Data Frames using this modulation mode:

Two carrier 4PSK, 500 Hz BW
Eight carrier 4PSK, 1600 Hz BW

Fd4FSK 4FSK modulation @ 46.875 baud

Encoding for type 1 (Data + weak Reed-Solomon error correction):
Fd4FSK := Pilot & Bsid & Bpsn & Bbc & Bdata & Bpad & Bsch & Bscl & BRS

Where:
Bsid is the 16 bit Session ID.
Bpsn is the Packet Sequence Number (0 to 255 mod 256)
Bbc is the byte count (the number of bytes in Bdata only)
Bdata is the data bytes (up to 16 bytes/carrier)
Bpad is remaining B00 if required to fill Bdata frame if < 16 bytes are used
Bsch is the high byte of the CRC16 sum check per carrier
Bscl is the low byte of the CRC16 sum check per carrier
BRS is the weak Reed Solomon 16 byte check sum using a shortened RS

code of 239,255 (8 error correcting)

Fd4FSK Encoding for type 2 (Extended RS Parity):
Fd4FSK := Pilot & Bsid & BRSX Where:

Bsid is the ones compliment of the 16 bit Session ID.
BRSX are the 36 extended Reed Solomon Parity bytes only of a strong RS

code 219,255 (18 error correcting).

For 4FSK each carrier group of 4 tones is separated by 4 x 46.875 or 187.5 Hz.
Data Frames using this modulation mode:

Two carrier 4FSK, 500 Hz BW
Eight carrier 4FSK, 1600 Hz BW

6.3 Protocol Details

11

Fig 6 1 Simplified Protocol State diagram:

6.3.1 Protocol Rules: (refer to state diagram Fig 6-1)
1) Offline.

a. When WINMOR is in the Offline State it may send no data, receive no
data and the sound card is deactivated and sound card resources released.

2) All other states, events, actions and state sequencing details are shown in the
Protocol rules of Appendix C.

7.0 Example Forwarding Scenarios:

7.1 A typical Forwarding Session: (no errors or repeats)

CLIENT SERVER
State Frame Sent State Frame Sent
CONNECTING CONREQ

DISCONNECTED ACK (BW)
ISS IDLE

IRS BREAK
ISS ACK

IRStoISS DATA

IRS
ISS

Disconnected

IRStoISS

Disconnecting

Offline
Sound card

Disabled

Connecting

Repeat
Connect
Request

DisconnectREQ
Received

ACK(BW)
Received

Repeat BREAK

ACK received

Answer with ACK,
Disconnect REQ
Or BREAK

Timeout

BREAK received
Send ACK

IDLE received with
Outbound pending
Or BREAK

Send DATA,
IDLE or OVER
Process ACK
Reply

Accepted
Connect REQ
Send ACK(BW)

Send
Disconnect REQ

(repeat up to 4x)

Any
State

ACK Received
or 4 repeats

Disconnect REQ
Received,
Send ACK

Any
State

WINMOR Protocol States

Initiate
Connection

Timeout

ISS, ISS ModeShift,
IRS, IRS ModeShift,
and IRStoISS states

ISS ModeShift

PSN
Rcvd

Send Req
Last Sequenced

PSN

Updated Dec 10, 2009

IRS ModeShift

Req Last PSN
Data Rcvd

Connect
Pending

Connect Frame
Detected

Rejected

Send BREAK

IRS States
ISS States
Transition States
Unconnected States

Send ID

ID Sent

12

IRS ACK

ISS DATA
IRS ACK

ISS DATA

IRS ACK

ISS IDLE (end of data)
IRStoISS BREAK

ISS ACK
ISS DATA

IRS ACK
ISS DATA

..
IRS ACK

ISS IDLE (end of data)
IRS ACK

DISCONNECTING DIS REQ
SENDID ACK

SENID (send ID Frame)
DISCONNECTED

SENDID (Send ID Frame)
DISCONNECTED

13

8.0 Frame Timing

Fig 8 -1 below shows the simplified frame timing requirements for WINMOR. The
TTransmitData, TACK, and TCTRL times can be calculated from the details in the WINMOR
Rate worksheet shown in Appendix A.

Transmit DataISS Leader

ACKLeader

CTRLLeader

Transmit DataLeader

ACKLeader

CTRLLeader

ACKLeader

IRS

ISS

IRS

TDataCycle

TCtrlCycle

TACKdly TACKdly

TACKdlyTACKdlyTACKdly

Frame Timing Details for ISS and IRS

TACKdly

TDataCycle

TCtrlCycle

100ms Min, 500 ms max

TLeader

Tleader 28 Symbols + optional 12 symbol VOX extenstion (298.6 426.6 ms)

Repeat interval if NO ACK received >= TTransmit Data + TACK + 2(TLeader + TACKdly)max

Repeat interval if NO ACK received >= TCTRL + TACK + 2(TLeader + TACKdly)max

(not to scale)

TTransmitData

TACK

TCTRL

Fig 8 1 Frame Timing Details

14

Appendix A: WINMOR Mode Rate Worksheet

 (details of frame construction for all modes, all bandwidths)

15

Appendix B: Pragmatic Trellis Code Modulation (PTCM)

Trellis code modulation is a combination of FEC encoding with PSK modulation used
to improve the Bit error rate of uncoded PSK modulation. Pragmatic means using
standard available encoders/decoders (e.g. Viterbi) in place of the slightly more
optimized Ungerbroeck Trellis coded modulation encoder/decoders. Pragmatic TCM
is within about .2 dB of the optimized Ungerbroeck code of the same constraint
length over the typical bit error rates encountered.

Figure B-1 shows the block diagram of the PTCM encoder as employed in the
WINMOR midrange speed mode (Trellis 8PSK). Similar schemes are used for the
4PSK and 16PSK modulation modes. In all cases the TCM adds one bit to the user
symbol doubling the number of PSK phases per symbol.

Figure B-1 WINMOR 8PSK PTCM Encoding

The encoding is summarized as follows:
A frame consists of 64 Payload (user data) bytes + 6 bytes of overhead. This frame is
encoded using a weak R-S (Reed-Solomon) code (243,255) shortened to 82 bytes.
This code will correct up to 6 byte errors in the 82 transmitted bytes. The resulting 82

Weak R-S
Encoding

(Data + Parity)

Strong R-S
Encoding

(Parity Only)

Frame Data

S

E

L
E

C

T
O

R

Weak/Strong

Selection
(toggles with each frame repeat)

Reed-Solomon Encoding

Symbol

Mapping
4 symbols

Per byte

0 Degrees

180 Degrees

U0

M

U

X

U1

R=1/2, K = 7

 (Voyager)
Viterbi Encoder

C0, C1

 Symbol to

Angle Mapping

0, 45, 90,135
 Degrees
 (Gray code)

+

0, 180 degrees

8PSK To

Modulator

WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM)

Uncoded 2 bit

Symbol U

Viterbi Encoding

Encoding

16

bytes are mapped into 328 symbols of 2 bits each. The most significant symbol Bit U0

is not FEC coded and selects an angle of 0 degrees (U0 = 0) or 180 degrees (U0 = 1)
The least significant bit U1 is fed into a standard (NASA Voyager) R= ½ , K=7
Viterbi Encoder which produces 2 FEC coded output bits C0 and C1 for each input bit
U1.

C0 and C1 are mapped to one of 4 phase values 0, 45, 90 or 135 using a gray code
mapping. This phase value is added to the output of the multiplexer (0 or 180
degrees) to obtain the final 8PSK modulation angle (0 to 315 degrees in 45 degree
steps)

Figure B-2 is a diagram of the PTCM decoder used by WINMOR s Trellis 8PSK
mode.

Figure B-2 WINMOR 8PSK PTCM Decoding

The decoding operation is somewhat more complicated and summarized as follows:
The demodulated differential phase angle from the DSP (0 to +360 degrees, with
noise) is the input to the decoder (one angle per symbol time). The angle is doubled,
modulo 360 to nullify the 0 or 180 degree component of the uncoded bit. The
resulting phase value 0 to 360 degrees in nominal (now 90) degree steps) is recoded
to soft I and Q values which will be the soft I and Q inputs for two binary values
input to the Viterbi encoder. Figure B-3 shows the mechanism for the angle to soft I

WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM)

Decoding

Demodulated 8PSK Differential Phase

From DSP (0 to 360 degrees, with noise)

Angle

Multiplier
2x
Modulo 360

Degrees
(nullifies
uncoded
phase)

Angle to Soft

 I and Q
 Mapping

[8 bit soft I & Q
 resolution]

R=1/2, K = 7

 (Voyager)
Viterbi Decoder

Viterbi Decoding

+

U1

R=1/2, K = 7

 (Voyager)
Viterbi Encoder

Viterbi Encoding

C0, C1

 Symbol to

Angle Mapping

0, 45, 90,135
 Degrees
 (Gray code)

Comparator

 90

 Degrees

Most Likely Estimate of

 Viterbi Encoded Phase

U0

 Same as Encoding

2 bit Symbol to

Byte packing Weak/Strong

Reed-Solomon

 Decoder

U1

Weak/Strong

Frame toggle

 Best estimate

 of Uncoded
 Phase

+

-

 Data

 Weak RS
Strong RS

Final Frame Data:

17

& Q mapping. The Viterbi decoder generates the best estimate for the original binary
bit for each pair of soft I and Q inputs. This bit becomes the decoded symbol least
significant bit U1. U1 is also fed into a Viterbi Encoder and Symbol to Angle mapper
(exactly the same as is used in the encoder in Fig B-1) to yield the most likely
estimate of the original Viterbi encoded phase angle value. This most likely estimate
(0 to 135 degrees in 45 degree steps) is then subtracted from the original differential
phase angle from the DSP to yield a best estimate of the uncoded bit phase
(nominally 0 or 180 degrees). The resultant best estimate is compared to 90 degrees
to generate U0 the most significant bit of the symbol. The symbols composed of U0

and U1 are then packed 4 symbols/byte for Reed-Solomon decoding. If this is the
initial transmission of the frame the weak R-S code of 243,255 (6) shortened to 82
bytes is used. This weak R-S code will correct up to 6 byte errors in the total 82 bytes
transmitted. If the frame is a repeat (requested after a decode failure of initial attempt)
then the 82 bytes of data are interpreted as the ID + parity only component of a strong
R-S code of 175,255 code which can correct up to 40 errors of the shortened 150 code
consisting of the 70 original payload + overhead bytes concatenated with the 80
strong R-S parity bytes. Thus the strong R-S code can correct up to 40 errors of the
150 bytes of data plus strong parity (transmitted over two frames).

 Figure B-3 Phase Angle to Soft I and Q Mapping with examples.

Strong 1,1Strong 0,1

Strong 0,0 Strong 1,0

(228,228)

(228,28)(28,28)

(28,228)

(28,128)

(128,28)

(228,128)

(128,228)

Angle
= 0

Deg
re

es

Angle
= 18

0 D
eg

re
es

Angle = 90 Degrees

Angle = 270 Degrees

Example
Angle = 60 deg

(I=28, Q=161)

Phase Angle to Soft I and Q Mapping (Gray Code)

Note: Vector
Locus forced
To lie on shaded
Part of IQ Plane

Example
Angle = 295 deg

(I=172, Q=28)

Soft Coding:
28 = perfect 0
228 = perfect 1
128 = erasure

18

A similar approach to PTCM encoding and decoding is done on both the 4PSK mode
(no uncoded bits, 2 Viterbi bits) and the 16PSK mode (2 uncoded bits, 2 Viterbi bits).

References:

1) A Pragmatic Approach to Trellis-Coded Modulation. A. Viterbi, J. Wolf, E.
Zejavo, R. Padovani IEEE Communications Magazine July 1989, pp11-19
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=31452

2) Data Recovery in Differentially Encoded Quadrature Phase Shift Keying. J. Bard,
M. Nezami, and M. Diaz Mnemonics, Inc Melbourne, FL.
http://whitepapers.silicon.com/0,39024759,60446221p,00.htm

 3) Error Control Coding, Second Edition. Shu Lin and Daniel Costello
 Pearson Prentice Hall 2004 ISBN 0-13-042672-5

4) Trellis Coded Modulation Tutorial, Charan Langton, 2004.
http://www.complextoreal.com/chapters/tcm.pdf

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=31452
http://whitepapers.silicon.com/0,39024759,60446221p,00.htm
http://www.complextoreal.com/chapters/tcm.pdf

19

Appendix C: Detailed State Change Rules
These rules provide the detail that implements the WINMOR Protocol State
Diagram shown in Fig 6-1.

1 Rules for IRStoISS State
1.1 Event = ACK 00 Received

Action: Send Data (data pending or IDLE)
Next State: ISS

1.2 Event = No ACK received by BREAK timeout
Action: Repeat BREAK
Next State = IRStoISS

1.3 Event: Inactivity Timeout
Conditions: none
Actions: Send ID Frame (no ID delay)
Next State: SENDID

1.4 Event: Disconnect Request Received
Conditions: none
Actions: Send ID Frame (8 sec ID delay)
Next State: SENDID

2 Rules for DISCONNECTED State
2.1 Event = Connect request Frame detect (before Decode)

Conditions: Decode Frame type Connect Request
Action: none
Next State: CONNECT PENDING

3 Rules for CONNECTING State
3.1 Event = Bandwidth specific ACK received

Conditions: Matches current session ID
Action: Send IDLE, set Repeat ON if no Data pending
Next State: ISS

3.2 Event: Bandwidth specific ACK received
Conditions: Matches current session ID
Actions: Send DATA, set Repeat ON if Data is pending
Next State: ISS

3.3 Event: Connect request Timeout
Conditions: none
Action: Send ID Frame (no ID delay)
Next State: SENDID

20

4 Rules for CONNECT PENDING State

4.1 Event = Successful Decode to Target Call sign
Conditions: Target Call sign matches local call sign
Action: Send bandwidth specific ACK, set Repeat OFF
Next State: IRS

4.2 Event: Decode Failure
Conditions: Sumcheck fail or Target <> Local call sign
Actions: none
Next State: DISCONNECTED

5 Rules for DISCONNECTING State
5.1 Event = Control Frame Timeout

Conditions: Disconnect Repeat count < 5
Action: Send Disconnect Request, set Repeat ON
Next State: DISCONNECTING

5.2 Event: Control Frame Timeout
Conditions: Disconnect Repeat count > = 5
Actions: Send ID Frame (no ID delay)
Next State: SENDID

6 Rules for IRS State
6.1 Event = Data Received, Good match to ID bits

Conditions: Session ID match on at least one carrier
Action: Send ACK for each carrier correct, no repeats
Next State: IRS

6.2 Event: Data Received, Poor match to ID
Conditions: Session ID mismatch on all carriers
Actions: none
Next State: IRS

6.3 Event: Control Received, Request Last PSN
Conditions: Session ID match, Sumcheck OK
Actions: Send ACK containing Last PSN
Next State: IRS MODESHIFT

6.4 Event: Inactivity Timeout
Conditions: none
Actions: Send ID Frame (no ID delay)
Next State: SENDID

6.5 Event: Connect Request Frame Received
Conditions: Session ID Match, Sumcheck OK
Action: Send Bandwidth specific ACK
Next State: IRS

6.6 Event: Disconnect Request Received
Conditions: none
Actions: Send ID Frame (8 sec ID delay)
Next State: SENDID

21

6.7 Event: ID Frame Received

Conditions: none
Actions: Send ACK 00
Next State: IRS

7 Rules for IRS MODE SHIFT State
7.1 Event = Data Received

Conditions: Session ID Match
Action: Send ACK for each carrier no repeats
Next State: IRS

7.2 Event: Control Frame Idle received
Conditions: none
Actions: ACK(0), No repeat
Next State: IRS

7.3 Event: Inactivity Timeout
Conditions: none
Actions: Send ID Frame (no delay)
Next State: SENDID

7.4 Event: Disconnect Request Received
Conditions: none
Actions: Send ID Frame (8 sec ID delay)
Next State: SENDID

8 Rules for ISS State
8.1 Event = ACK received

Conditions: OB bytes pending after ACK processed, no speed shift
required
Action: Send next OB Packet with Repeat
Next State: ISS

8.2 Event: ACK received
Conditions: OB bytes pending after ACK processed, speed shift
Actions: Send Control request last PSN with repeat
Next State: ISS MODESHIFT

8.3 Event: ACK received
Conditions: no OB bytes pending after ACK processed
Actions: Send Control Idle with repeat
Next State: ISS

8.4 Event: Inactivity Timeout
Conditions: none
Actions: Send ID Frame (no ID delay)
Next State: SENDID

8.5 Event: Disconnect Request Received
Conditions: none
Actions: Send ID Frame (8 sec ID delay)
Next State: SENDID

8.6 Event: ID Timeout (10 minutes) expired

22

Conditions: none
Actions: Send ID Frame (no delay or CWID) repeat until ACK 00
Next State: ISS

9 Rules for ISS MODE SHIFT State
9.1 Event = PSN Received

Conditions: Session ID Match, Sumcheck OK, OB Packets Remaining
Action: Send next Data packet
Next State: ISS

9.2 Event = PSN Received
Conditions: Session ID Match, Sumcheck OK, no OB Packets Remaining
Action: Send Idle, set repeat

9.3 Event: Inactivity Timeout
Conditions: none
Actions: Send ID Frame (no ID delay)
Next State: SENDID

9.4 Event: Disconnect Request Received
Conditions: none
Actions: Send ID Frame (8 sec ID delay)
Next State: SENDID

10 Rules for SENDID State
10.1 Event = ID Timeout Reached (nominally 0 or 8 seconds)

Conditions: none
Action Send ID Frame followed by CWID if CWID is enabled
Next state: DISCONNECTED

10.2 Event: Disconnect Request received (while waiting for ID timeout)
Conditions: Session ID matches current session
Action: Send ACK(FF) with session ID

 Extend ID Timeout by 8 seconds
Next State: SENDID

