
 February 2010 1

W hat do you mean it doesn’t have
a USB interface? I don’t even
have a COM port on my new

computer!” Such was the cry from the very
beginning from many people who wanted to
learn to program PIC microcontrollers and
then read about the COM port based PIC-EL
board and the associated online PIC pro-
gramming course that we developed.

The PIC-EL Revisited
In the May and June 2007 issues of QST

I presented a two part article describing the
PIC-EL. This project was developed to help
hams get practical hands-on experience using
PIC microcontrollers for some fun and use-
ful ham applications.1 As John McDonough,
WB8RCR, began writing his lessons for the
Elmer-160 course, several of us who are
associated with the AmQRP club began
designing this companion board to allow the
students to experiment with the material as
they navigate through the lessons.2 I decided
to call it the PIC-EL (“pickle”), since it’s for
PIC microcontrollers and it goes along with
the Elmer-160 lessons.

Right from the beginning we knew
that a USB interface would be a desirable
interface for the tool. However, there were
several problems. First of all, we had a very
tight, self-imposed time schedule. We really
wanted to get the board ready to go about
three months from the day I hand-sketched
out the first conceptual circuit and e-mailed
it to the other team members. We then found

several examples
of simple hardware

circuits using COM
ports and we were quite con-

fident that we could make similar
circuitry work in our application. To

develop the circuitry for a USB interface,
whether it was one of the integrated circuits
designed for this type of task or if the cir-
cuitry was designed from scratch, it was
obvious that a USB solution would be much
more complicated.

Second, we didn’t have a simple PC
application to drive the programmer with a
USB interface that we could use to send the
low level (HEX) code into the PIC. We had
several nice, free, PC applications that could
drive the COM port circuitry we were look-
ing at, however.

We carefully evaluated these reasons and
concluded that the risks with pushing for a
USB interface were too great. We decided
to go with the simple COM port for the first
version, with the intent of continuing to look
for a USB solution for the future.

In my PIC-EL YAHOO group, users
of the PIC-EL board discuss their projects
and ask questions about PIC programming
issues as well.3 One of the subjects that fre-
quently comes up is how to get the PIC-EL
to work with a USB interface. While we
tried using various COM-to-USB converters
(they don’t work, since we drive the COM
port pins directly) I quietly kept looking for
a good solution.

I investigated many different methods
but each had severe drawbacks, including
the need for me to write new program-
ming software to support it. Then, in late
2007, I bought a Microchip PICKit2, think-
ing it might be a way to quickly attach to
the PIC-EL with a USB connection.4 The
PICKit2 would be connected such that
it would bypass the PIC-EL’s hardware
programmer and connect directly into
the PIC-EL’s configuration header. My
initial attempts to make this work failed,
but several months later I discovered that

Microchip had published a set of updates
for the PICKit2 hardware. After I installed
them, it worked perfectly on the PIC-EL II. I
then discovered a number of “clones” on the
Internet and, upon examining them, realized
that a lot of the hardware in the Microchip
PICKit2 is nice but not really needed for
a PIC-EL environment. I then made and
prototyped a stripped down version of the
PICKit2 using ideas from other designs on
the Internet but putting my own spin on it.
After some extended debugging sessions the
PIC-EL III was born.

PIC-EL III Hardware Description
The schematic of the new PIC-EL III

board is shown in Figure 1. The “right
side,” the various hardware components that
can be driven by the target PIC, has been
changed very slightly since the PIC-EL II,
but the “left side,” the programmer portion,
has been completely replaced.

PIC-EL III Computer (USB)
Interface and Programmer

The programmer section has been
replaced with circuitry to provide a USB
interface. The circuitry is a simplified
version of the PICKit2 by Microchip
Technology (www.microchip.com) and has
a Microchip PIC 18F2550 in its center. The
code for the 18F2550 is produced and dis-
tributed (free of charge) by Microchip.

The PIC-EL III hardware programmer
uses MOSFETs to drive the programming
lines. It does not draw 5 V power from the
USB connection but instead runs on 5 V power
from the PIC-EL’s 12 V to 5 V regulator. The
programmer hardware has charge pump
circuitry to internally generate the +12 V
programming voltage (VPP) to be applied to
the MCLR pin. Note that the PIC-EL expects
12 V power being supplied at all times and
it does not use the 5 V power supplied by
the USB. The PIC-EL’s 12 V to 5 V voltage
converter supplies all the 5 V power for the
PIC-EL board.

Note that when the PIC-EL is in

Pickle with USB I/O
Update the PIC-EL to use with a

new PC with a USB interface.

Craig Johnson, AAØZZ

1Notes appear on page 5.

2 February 2010

Figure 1 — Schematic diagram of the PIC-EL with USB interface.
The right side is very similar to the previous versions.
See parts list on page 6.

 February 2010 3

4 February 2010

PROGRAM mode, the programmer hardware
generates VDD (+5 V) and VPP (+12 V) with
the appropriate timing to program the target
PIC. Depending on the type of PIC being
programmed, the programmer sometimes
raises VPP before VDD and sometimes raises
VDD before VPP. It’s tricky but very impor-
tant. (This removes a limitation found in
the previous PIC-EL versions as well as all
other Tait type programmers that use a COM
interface. There simply aren’t enough pins in
a COM port to do this.)

Project/Demonstration Portion
The project/demonstration portion of the

PIC-EL board was described in great detail

Figure 2 — Schematic of basic PIC circuit
showing interconnections.

Figure 3 — Two methods of illuminating
an LED.

Figure 4 — Schematic of control circuitry for a backlighted LCD
display panel. Figure 5 — Screenshot of Microchip PICKit2 software screen.

in the 2007 QST article so I won’t repeat it
here. In brief, PIC experimenters using a
PIC-EL have an easy way to use and under-
stand the following hardware components:
 18 pin PIC microcontroller (16F84A,

16F628/A, 16F88, 18F1320, and others)
 4 MHz crystal oscillator
 2 × 16 LCD (two lines of 16 charac-

ters)
 Rotary encoder (ENC-1)
 Three general-purpose push-buttons

(PB1 through PB3)
 A dedicated push-button (PB4) for

master clear (reset) of the PIC microcon-
troller
 Three LEDs (LED1 through LED3)
 A speaker (SPKR-1) with transistor

driver.
 All connections necessary to mount

and drive an NJQRP DDS daughtercard
(DDS-30 or DDS-60)
 A stereo jack for connection to CW

paddles.
 A stereo jack with transistor driver for

transmitter keying
 A transistor “conditioner” for convert-

ing low level signals to levels required for
PIC input detection.
 A multi-purpose BNC connector
 Selectable via a jumper at header

HDR2
 Allow DDS output to be routed to the

BNC
 Allow DDS output to be routed

through the “conditioner” circuit and then to

a PIC input pin
 Allow an outside signal source to be

brought in to the “conditioner” and then to
the PIC input pin
 A 2 × 7 pin header block (HDR1 -

CONFIG)
 Allows attachment of a foreign pro-

grammer to this PIC project board
 Allows attachment of this programmer

to a foreign project board.
The PIC-EL schematic (Figure 1) may

look quite complicated because many of the

 February 2010 5

Did you enjoy this article?
Cast your vote at:

www.arrl.org/members-only/
qstvote.html

PIC pins have multiple usages. It’s much
easier to understand the individual functions
when they are isolated. Here are a couple
of examples. Figure 2 shows the basic con-
nections and components that are required
to run any PIC. (The crystal is optional but
is used in the PIC-EL.) Figure 3 shows the
basic connections and components needed
to light an LED, while Figure 4 shows one
way of connecting an LCD. Many more
examples were shown in the previous QST
articles and are shown in the user manual.5

Programming a PIC
with the PIC-EL III

Code to be loaded into the PIC in the
PIC-EL can be developed in many different
ways. If you follow the lessons in the Elmer-
160 course you will be able to understand
the PIC architecture and command set well
enough to write your applications in low
level machine language code. Hey, it’s not
that hard. There are many examples of PIC
code on the Internet, and you can easily col-
lect pieces that are useful in your application.
I also have several working examples on my
Web page and in the FILES section of the
PIC-EL YAHOO group of code that works on
the PIC-EL.6,7 There are a simple CW keyer,
a frequency counter and a signal generator
using the DDS-30 or DDS-60. The code for
these sample applications is written in a form
that makes it easy to understand (many com-
ments) and can be used as a springboard for
your own application. All are readable with a
text editor. Go ahead and take a look.

Writing the Code into the PIC
One of the great benefits in having

PICKit2 look-alike hardware is that it
can be driven with the neat, stand-alone
Windows application that Microchip freely
distributes. Alternatively, it can be done with
Microchip’s freely distributed MPLAB IDE
or their command-line version, PK2CMD.
Note that Microchip also has versions of
PK2CMD that run under the Linux and
Macintosh operating systems as well.8,9
With the PIC powered up and the USB cable
connected, the PICKit2 application can be
started. It will connect with the 18F2550
PIC in the PIC-EL and immediately report
that it found a PICKit2. Figure 5 is a screen-
shot showing the PICKit2 application con-
nected to the PIC-EL and ready to program a
PIC. Programming a PIC is this easy:

 Power up the PIC-EL
 Connect the USB connector to the PC

to the PIC-EL
 Start the PICKit2 application
 Flip the PROGRAM / RUN switch in the

PIC-EL to the PROGRAM position
 Insert the PIC to be programmed in the

PIC-EL socket
 Select the PIC TYPE in the pull-down

box in the PICKit2 application
 Import the code (.HEX format) from

the location on your PC where it is stored
 Press the WRITE tab
 Wait for a SUCCESS message. The

verify operation is automatic.

Running the PIC Program
on the PIC-EL III

Now you are ready to try out the PIC pro-
gram that you just loaded into the PIC. It’s
just a matter of flipping the PROGRAM / RUN
switch to RUN position and the PIC program
will start up. Now you can see the results of
your labor. Fun, isn’t it?

How quick is it? I can literally change the
source code of a program, assemble it, write
it into the PIC, flip the switch and try it out
in about 20 seconds! That’s why developing
code with a PIC-EL is so much fun.

Options
Microchip’s PICKit2 Application runs on

the Windows 98 SE platform and beyond. I
mentioned Microchip’s stand-alone PICKit2
application because it’s perhaps the easiest
way to go. There are a few other possibilities,
however. Microchip’s MPLAB IDE can also
be used as well as Microchip’s command-
line interface program called PK2CMD.
Microchip has versions of PK2CMD for
Windows as well as Linux and Mac OS X.

Questions and Support
For up-to-date details and documenta-

tion regarding this project, please see my
Web page, www.cbjohn.com/aa0zz. For
additional support questions, see the PIC-EL
YAHOO group or e-mail the author.

Conclusion
It’s very satisfying to be able to develop

a PIC program that performs a task exactly
the way you want it to. Using the PIC-EL to
develop and test code is a very convenient
and enjoyable way to do this. With the low
prices for PIC microcontrollers these days,

it’s really easy to think of lots of ways to use
them. In simple configurations, you don’t
even need a crystal, so it’s easy to throw a
micro into a simple circuit to accomplish a
task that you have in mind. Yes, it takes a bit
of effort, but the end result is well worth it.
Once you get going, you will be amazed how
many more applications you will dream up.

Notes
1www.amqrp.org/elmer160/index.html.
2G. Heron, N2APB; J. Everhart, N2CX; J.

McDonough, WB8RCR; E. Morris, N8ERO;
J. Kortge, K8IQY, and the author.

3www.groups.yahoo.com/group/PIC-EL.
4Microchip Technology Inc (www.microchip.

com).
5PIC-EL III kits are now available from Bill

Kelsey, N8ET, at Kanga. See his Web page,
www.kangaus.com for details, or e-mail
him at n8et@arrl.net.

6www.cbjohn.com/aa0zz.
7See Note 3.
8www.linux.com.
9www.apple.com/mac/.

ARRL member and Extra Class licensee
Craig Johnson, AAØZZ, has earned BSEE
and MBA degrees. He worked for Unisys for
35 years on the design and development of
large computers and now works for Alliant
Techsystems, a Defense Department contractor,
developing microprocessor based products for
the military. Craig holds seven US patents
based on his work in computer hardware and
software.

Craig got his first ham license in 1964 at the
age of 14. He credits ham radio with sparking
his interest in electronics and as a major factor
in pointing him toward a career in electrical
engineering. During and after his college years,
however, he let his license lapse for several
years and concentrated on computers.

For several years, Craig led a team of
Volunteer Examiners (VE) and helped hundreds
of people in the St Paul area get or upgrade
their licenses. He still serves as a VE on occa-
sion. He is an active member of the Minnesota
QRP Society. Craig enjoys low power operat-
ing (QRP), DXing and contesting. He is happi-
est, however, when he is tinkering, building or
experimenting with his new designs, circuits
and software. His current interests are centered
around projects that use microcontrollers,
Direct Digital Synthesis and the new digital
modes.

You can reach Craig at 4745 Kent St,
Shoreview, MN 55126 or at aa0zz@
arrl.net.

6 February 2010

C1, C2, C14, C15 — 22 pF, ceramic disc (Digi-
Key 490-3639-ND, Mouser 140-50N2-220J-RC).

C3, C4, C6, C7, C9, C10, C13 — 0.1 μF,
monolithic (Digi-Key P4910-ND,
Mouser 80-C317C104M5U).

C5, C8 — 4.7 μF, 16 V, electrolytic
(Digi-Key P996-ND,
Mouser 140-XRL16V4.7-RC).

C11 — 0.22 μF, monolithic
(Digi-Key 445-2849-ND).

C12 — 47 μF, 16 V, electrolytic
(Digi-Key P969-ND).

C16 — 0.47 μF, ceramic radial
(Digi-Key BC1150CT-ND).

D1, D4 — BAT85 (Digi-Key 568-1617-1-ND).
D3 — 1N4004 (Digi-Key 1N4004-E3/73GI-ND).
D6 — 1N4148 (Digi-Key 1N4148FS-ND, Mouser

625-1N4148).
ENC — Rotary encoder

(Digi-Key P10860-ND, or Digi-Key P12334-ND
or Digi-Key P12335-ND).

HDR-1 — Pin header, 0.1", 2 × 7 position
(Mouser 571-4-103328-3).

HDR-2 — Pin header, 0.1", 2 × 2 position
(Mouser 571-1032402).

HDR-3 — Pin header, 0.1", 1 × 2 position
(Mouser 571-1032392).

J1 — Coaxial power jack, 2.1 mm
(Digi-Key CP-102AH-ND).

J2 — USB B receptacle
(Digi-Key WM17131-ND).

J3, J8 — Audio jack, 1⁄8", stereo
(Digi-Key CP1-3513N-ND, Mouser 161-3507-E).

J4 — SIP header, 16 position (LCD)
(Mouser 571-16404526).

J5 — DIP socket, 18 position (PIC)
(Digi-Key ED3118-ND).

J6 — SIP socket, 8 position, 90°
(SamTec SSQ-108-04-T-S-RA).

J7 — BNC jack, PCB mount
(Mouser 523-31-5538-10-RFX).

J9 — DIP socket, 28 position (PIC)
(Digi-Key ED3128-ND).

L1 — 680 μH inductor
(Digi-Key M8156-ND).

LCD — Liquid crystal display, 2 × 16 character
(ElectronixExpress.com 08LCD9).

LED1-LED4 — LED, T1-3⁄4 (red)
(Digi-Key 67-1110-ND).

LED5 — LED, T1-3⁄4 (green)
(Digi-Key 67-1109-ND).

P4 — SIP socket, 16 position (PCB)
(Digi-Key ED7150-ND, Mouser 517-974-01-16).

PB1, PB2, PB3, PB4 — SPST push-button,
momentary (Digi-Key P8079SCT-ND).

Q1, Q2, Q4 — BS170, TO-92
(Digi-Key BS170-ND).

Q3 — BS250, TO-92, with two sides flat
(Digi-Key BS250P-ND).

Q5, Q7 — 2N3904 transistor, NPN, TO-92
(Digi-Key 2N3904D26ZCT-ND).

Q6 — 2N4401 transistor, NPN, TO-92
(Digi-Key 2N4401-ND, Mouser
610-2N4401).

Q8, Q9 — IRF9Z24, TO-220
(Digi-Key IRF9Z24PBF-ND).

R1 — 75 Ω, 1⁄4 W (Digi-Key 75EBK-ND).
R2, R9, R10, R21-R26, R30, R34, R36, R38 —

10 kΩ, 1⁄4 W (Digi-Key 10KEBK-ND, Mouser
291-10K-RC).

R3, R8, R27, R29 — 4.7 kΩ, 1⁄4 W
(Digi-Key 4.7KEBK-ND).

R4 — 2.7 kΩ, 1⁄4 W (Digi-Key 2.7KEBK-ND).
R5, R6 — 47 Ω, 1⁄4 W (Digi-Key 47EBK-ND).
R7, R11, R12, R16-R18, R20 — 1 kΩ, 1⁄4 W

(Digi-Key 1.0KEBK-ND, Mouser
291-1K-RC).

R13, R15 — 470 Ω, 1⁄4 W
(Digi-Key 470EBK-ND,
Mouser 291-470-RC).

R14 — 5.6 kΩ, 1⁄4 W (Digi-Key 5.6KEBK-ND,
Mouser 291-5.6K-RC).

R19 — 6.8 kΩ, 1⁄4 W (Digi-Key 6.8KEBK-ND,
Mouser 291-6.8K-RC).

R28, R31, R35 — 100 Ω, 1⁄4 W
(Digi-Key 100EBK-ND,
Mouser 291-100-RC).

R32 — 100 kΩ, 1⁄4 W (Digi-Key 100KEBK-ND,
Mouser 291-100K-RC).

R33 — 51 Ω, 1⁄4 W (Digi-Key 51EBK-ND,
Mouser 291-51-RC).

R37 — 6.2 Ω, 1⁄4 W (Digi-Key 6.2EBK-ND,
Mouser 291-6.2-RC).

S1 — Slide switch, DPDT
(Digi-Key SW102-ND).

Shunts for HDR1-HDR3 — shunt, 0.1",
2 position (Digi-Key S9000-ND,
Mouser 571-2-382811-1).

SPKR — Speaker (Digi-Key 433-1028-ND).
U1 — PIC16F628A microcontroller

with diagnostics pre-loaded
(Mouser 579-PIC16F628A-E/P with AAØZZ
diagnostics).

U2 — L7805 voltage regulator, 5 V, TO-220
(Digi-Key 497-1443-5-ND,
Mouser 511-L7805 ABV).

U3 — PIC18F2550 microcontroller
with PICKIT2 code pre-loaded
(Digi-Key PIC18F2550-I/SP-ND with code).

XTAL1 — Crystal, 4 MHz
(Digi-Key X405-ND,
Mouser 520-HCU400-20).

XTAL2 — Crystal, 20 MHz
(Digi-Key CTX416-ND).

Parts list for Figure 1 (pages 2 and 3)

