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Quality Factor, Bandwidth, 
and Harmonic Attenuation 

of Pi Networks
The author looks at several definitions of Q, and makes some 

interesting discoveries about what these calculations can 
tell us about the design of pi networks.. 

1Notes appear on page 35

I recently became interested in pi networks, a type of impedance-
matching resonant network that provides harmonic attenuation 
and is often used in tube-type Amateur Radio transmitters. I was 
particularly interested in the relationship between the quality factor, 
Q, and the bandwidth of these networks. In various editions of 
The ARRL Handbook for Radio Communications, I found three 
definitions of Q, all different. None of the three were very good 
predictors of the bandwidths of pi networks for most values of the 
load and source impedances. During these explorations, however, I 
discovered that a modification of one of the three provided a much 
better predictor of bandwidth. Subsequently, I was able to derive this 
modified form of Q theoretically. 

While the bandwidth of pi networks is interesting, a perhaps more 
important characteristic of these networks is their ability to attenuate 
harmonics present in the signals passing through them. This paper 
presents data on the harmonic attenuation of these networks as a 
function of their quality factors. 

Finally, I investigated whether the methods used in this paper 
could be extended to more complex networks. For pi-L networks, 
they yield a value for Q that fairly accurately predicts bandwidth but 
not harmonic attenuation. They also yield quality factors for more 
complicated networks, but these values do not seem to have much 
relationship with bandwidth. 

Quality Factor of Impedance-Matching Networks
Impedance-matching networks are characterized by, among other 

things, their design frequency (the frequency at which the input and 
output impedances are matched) and by the quality factor, Q. Quality 
factor is defined in two different ways. The first, and perhaps most 
common way, to define Q is given by Equation 1.

0
Average energy stored in reactive elements2   

Power dissapted by lossy elements
Q fπ= × ×

[Eq 1] 

where f0 is the design frequency (in which the output and input 
impedances are matched), and dissipated power is the electrical 
energy dissipated per second, that is, converted into some other form 
of energy, such as thermal or radiation. (Dissipated power divided by 
frequency is the energy dissipated per cycle.) 

Equation 2 gives a second definition of Q.

= 0fQ
BW 	 [Eq 2] 

where BW is the 3 dB bandwidth, which is the width between the 
upper and lower frequencies at which the response of the circuit is 
down 3 dB from its response at f0. 

Circuit-analysis textbooks show that these two definitions are 
exactly equivalent for simple series and parallel RLC circuits. For 
circuits using more than two reactive components, such as the 
pi network, it is unclear (to me at least) that the definitions given 
by Equations 1 and 2 are even approximately equivalent. This is 
important because the Q of a more-complicated matching network is 
most easily calculated using Equation 1, because this calculation can 
only be performed at one frequency, whereas the bandwidth and the 
network’s ability to attenuate harmonics of the design frequency are 
usually the more important parameters in the design process. That is, 
it seems to me that Q is useful for practical design work in so much 
as it provides information about the bandwidth and/or harmonic 
attenuation of a circuit. 

Wes Hayward, W7ZOI, in his ARRL book Introduction to Radio 
Frequency Design has the following discussion of Q.1

“Q is not well defined for networks with three or more 
reactive components. Still, Q is a frequently used parameter in 
the design equations for more complex networks. The meaning 
of Q is different when applied to such networks. It is the ratio of a 
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resistance to a reactance when looking into one end of the network 
at one frequency. Network reduction methods are always used. 
The user should not deduce the bandwidth of the network by the 
Q used for design.”
After puzzling about this for some time, I decided to look into the 

relationship between Q and bandwidth for a specific matching circuit, 
the pi network (which includes three reactive components). 

Quality Factor and Bandwidth of Pi Networks
Figure 1 shows a pi-network circuit configuration often used to 

match a load impedance, RL, to a source impedance, RS. A common 
application of pi networks is in the output circuits of tube-type power 
amplifiers, where relatively large source impedances have to be 
matched to relatively low antenna impedances. The configuration 
shown in Figure 1 forms a low-pass filter and provides substantial 
attenuation of harmonics of the design frequency. There is also a 
high-pass form of the pi network, but this configuration is not often 
used in Amateur Radio equipment, so I will concentrate solely on the 
low-pass form.

The transfer function of a pi network is defined as VL / VS, where 
VL is the voltage across the load resistor and VS is the source voltage. 
Figure 2 is a typical transfer function for a pi network, as a function 
of frequency. In this example, the design frequency was 1 MHz, the 
source and load resistances were 500 and 50 W, respectively, the 3 dB 
bandwidth was 100 kHz, and the transfer function was normalized 
to 0 dB at the design frequency. Notice the peak that occurs in the 
transfer function at the design frequency: It is the 3 dB width of this 
peak that defines bandwidth. 

I first looked into the Amateur Radio literature to see what others 
had learned about Q and bandwidth for pi networks. I discovered a 
1983 paper by Elmer Wingfield, W5FD, titled “New and Improved 
Formulas for the Design of Pi and Pi-L Networks,” published in 
QST.2 In this paper, the author notes that earlier ARRL publications 
had defined the pi network quality factor as the expression given in 
Equation 3.3

1C

S
I X

RQ = 	 [Eq 3] 

where RS and |XC1| are the source resistance and the magnitude of the 
reactance of the input capacitance. (Note that capacitive reactances are 
negative so, in this case, XC1 = – |XC1|.) Since this definition of Q refers 
only to the input section of the pi network, I will refer to it as QI in 
the remainder of this paper. Wingfield argued in his paper that a better 
value for Q would be one that accounts for both the source and load 
resistances, and proposed that Q be defined by Equation 4.
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This expression, which I will refer to as QW, includes both input 
and output resistances and reactances. 

The next documents I looked at were the 2003 and 2007 editions 
of The ARRL Handbook for Radio Communications, where the results 
reported by Wingfield were essentially reproduced.4, 5 I then looked at 
the 2013 and 2015 editions of the Handbook, where I found a new, 
and slightly more complicated, definition for Q, given in Equation 
5.6, 7
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I will call this definition QM because it refers to the latest, most 
modern definition of Q that appears in The ARRL Handbook. 

Finally, I am going to define a fourth expression, QBW, based on 
the actual bandwidth of the circuit, as calculated using Equation 2. 
As discussed earlier, the Amateur Radio literature uses at least three 
different definitions for the quality factor of a pi network. Are these 
definitions equivalent, and if not, which is the best predictor of the 
actual bandwidth of the circuit, that is, QBW?

To answer this question, I wrote a computer program (using Visual 
Basic 6.0) that, for a given pi-network design, calculates QI, QW, and 
QM, and also the transfer function from which the bandwidth and QBW 
can be determined. I then used this program to consider four cases, in 
which RS = 5, 50, 500, and 5000 W, while RL = 50 W. In each case, 
I selected values for XC1, XL, and XC2 so that the bandwidth of the 
resulting circuit was exactly 1/10 of the design frequency, that is, with 
QBW = 10. Table 1 shows my results. This table shows very clearly that 
the four definitions of Q are in substantial disagreement. For example, 
Q1 varies between 4.8 and 19.0 as the source resistance is varied from 
5 to 5000 W, even though the bandwidth is held constant. QM, on 
the other hand, consistently indicates a smaller bandwidth than the 
actual value; when RL = 5000 W, the indicated bandwidth is 53% of 
the actual value. Obviously, these two definitions of Q would be poor 
predictors of bandwidth (except when RS ≈ RL).

The Wingfield value for Q remains consistently in the range 20.4 
to 20.6 as the source resistance is varied. If we were to divide this 
value by 2, we would obtain values nearly equal to Q defined by 
bandwidth. This suggests that the definition for Q given by Equation 
6 might be more useful for predicting the bandwidth of a pi network.
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Figure 2 — Here is a plot of the transfer function (T) of a pi network. 
The design frequency for this example was 1 MHz. T is normalized to 

0 dB at the design frequency. 

Figure 1 — This schematic diagram shows a low-pass pi network. 
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                                      [Eq 6]

To test this hypothesis, I used the computer program described 
earlier to determine the error estimating bandwidth using Qnew defined 
by Equation 6. I did this for a fixed load resistance of 50 W and source 
resistances of 5, 50, 500, and 5000 W. I found that the errors using 
Qnew to estimate bandwidth were reasonably similar across all the 
load resistances, so I selected the maximum error across all source 
resistances. The result is shown in Figure 3. Qnew is plotted on the 
horizontal axis and the vertical axis is the error using Qnew to estimate 
bandwidth. The error estimating bandwidth using Qnew is about –31% 
for Qnew = 3. As Qnew is increased, the maximum error decreases 
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Figure 4 — This schematic diagram shows a pi network with a 
Norton Equivalent current source replacing the voltage source 

shown in Figure 1.

Figure 3 — This graph estimates the error in the predicted bandwidth 
using the quantity Qnew, as defined in the text.

Figure 5 — Here is a redrawn version of the pi network shown in 
Figure 4, obtained by converting parallel resistor and capacitor 

combinations into equivalent series combinations. 
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Table 1
Calculated Q Values and Harmonic Attenuations for Selected Source and Load Resistances, With Constant Bandwidth.
Q1 = RS / |XC1|, QW = RS / |XC1| + RL / |XC2|, QM = RS / |XC1| if RS ≥ RL or RL / |XC2| if RS < RL, and QBW = f0 / BW, where f0 = Design 
Frequency and BW = 3 dB Bandwidth.

Resistance (W)	 Reactance (W)

RS	 RL	 XC1	 XL	 XC2	 Q1	 QW	 QM	 QBW

5	 50	 1.03	 4.19	 3.21	 4.8	 20.4	 15.6	 10.0
50	 50	 4.91	 9.73	 4.91	 10.2	 20.4	 10.2	 10.0
500	 50	 32.1	 41.9	 10.3	 15.6	 20.4	 15.6	 10.0
5000	 50	 264	 285	 31.0	 19.0	 20.6	 19.0	 10.0

rapidly, falling to –8.6% when Qnew = 5 and –2.2% when Qnew = 10. 
These results show that Qnew is a good measure of the true bandwidth 
of a pi network, certainly for Qnew ≥ 5. Qnew is a better indicator of 
bandwidth than any of the three Q equations that appear in The ARRL 
Handbook. 

Of course, it would be desirable to also have a confirmation, based 
in theory, of this definition of Q [Equation 6]. In the next section, I 
present such a derivation. 

Theoretical Derivation of Qnew

Various textbooks on circuit analysis show (Norton’s Theorem) 
that a voltage source, characterized by an open-circuit voltage, VS, 
and a series impedance, RS, can be replaced by a current source, IS, 
shunted by an impedance RS, where IS = VS / RS. Thus, the pi network 
drawn in Figure 4 is equivalent to the pi network in Figure 1. Next, 
convert the parallel combination RS and XC1 in Figure 4 into a series 
combination RS´ and XC1´, and similarly convert XC2 and RL into XC2´ 
and RL´, resulting in the circuit configuration shown in Figure 5. The 
relation between the original and converted quantities is given in 
Equations 7 and 8.
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At first sight, Figure 5 appears to be a simple series RLC circuit, 
and, this is true so long as only one frequency is considered. Things 
become more complicated, however, as frequency is varied, because 
the resistances, RS´ and RL´, and the capacitances, C1´ and C2´ vary 
with frequency according to Equations 7 and 8. We can use Figure 5 
as long as we restrict ourselves to the design frequency. 
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In a matched system, the power transferred to the load resistance, 
RL´ in Figure 5, is maximized. It is easy to show (and is well known) 
that Equation 9 expresses the conditions for maximum power transfer.

1 2 0L C C

S L

X X X
R R

′ ′+ + =
′ ′=

		  [Eq 9]

These two equations determine the values of two of the three 
adjustable components (C1, L, and C2) in a pi network. We are thus 
free to choose the value of the remaining component. (Ultimately, 
we will use a specification of Q to determine the value of this 
component.) Thus, for the time being, assume that a value for XC1 
has been specified. We will determine XL and XC2 as functions of XC1.

Use the second equation in each set shown as Equations 7, 8 and 9.
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Solve this equation for XC2, yielding Equation 11.
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Then, the first equation in each set shown as Equations 7, 8 and 9 can 
be combined to yield Equation 12 for XL.
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[Eq 12]

What is the Q of the circuit in Figure 5? Treating it as a simple 
series RLC circuit with total resistance RS´+ RL´ and inductive 
reactance XL, we get Equation 13.
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Then, using Equations 7, 8, and 12, we get Equation 14.
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Equation 10 can be rearranged to yield the identity shown as 
Equation 15. 
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Placing this expression into Equation 14, we obtain Equation 16.
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This is just the expression for Q that we earlier identified as Qnew in 
Equation 6. We previously found that Qnew is a better predictor of the 
bandwidth of a pi network than other definitions of Q that have been 
given in the Amateur Radio literature, and we have now shown that 
there is theoretical plausibility for this form of Q. 

Calculation of Components of a Pi Network
Now I will show how to calculate XC1 given a value of Q. Equation 

16 can be rewritten as Equation 17.
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Use Equation 11 to eliminate X2

C2 in the denominator on the right-
hand side of Equation 17. This gives an equation that involves only RS, 
RL, XC1, and Q. Solving for XC1 gives the result shown in Equation 18.
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There is actually a second solution, obtained by replacing the plus 
sign in front of the square root symbol with a minus sign. I have been 
able to show, however, that this solution always leads to values of XC2 
and/or XL that have the wrong sign. 

Once XC1 is determined, the values of XC2 and XL can be calculated 
using Equations 11 and 12. In order for XC1 to be real and negative, 
the quantity in Equation 18 under the square root sign must not be 
negative and the denominator must be positive. In addition, for XC2, 
defined by Equation 11, to be a real number, the denominator of 
the fraction under the square root sign must be a positive number. 
Analysis shows that these three conditions are met if the following 
inequalities are satisfied 
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Harmonic Attenuation of Pi Networks
Figure 2 shows that pi networks provide substantial attenuation of 

the harmonics of the design frequency. Indeed, impedance matching 
and harmonic attenuation are the usual reasons for employing a pi 
network. I used the computer program described earlier to calculate 
the attenuation of the second through tenth harmonics of the design 
frequency of the network. The results for the second, third, and fourth 
harmonics are shown graphically in Figure 6 for values of Q defined 
by Equation 6, ranging from 1 to 20, and for source impedances of 
50, 500, and 5000 W. Because of the reciprocal nature of pi networks, 
harmonic attenuation for a network with a given ratio of source to 
load resistances will be the same as network whose ratio of source 
to load resistances is the inverse of the first. Thus, for example, the 
harmonic attenuation of a network with source and load resistances 
of, say, 500 and 50 W, respectively, will be the same as that of a 
network with source and load resistances of 5 and 50 W, respectively.

The data in Figure 6 show that harmonic attenuation increases as 
Q increases, but also that the rate of this increase decreases for larger 
values of Q. For a Q of 10, the second, third, and fourth harmonics 

[Eq 19]
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of the design frequency are attenuated by about –35 dB, –47 dB, and 
–54 dB, respectively, and are nearly the same for all three source 
resistances. The data for Q ≥ 7.5 are described with an accuracy of 
±0.5 dB or better by the form AN = a0 + a1Q + a2Q2, where AN is the 
attenuation of the Nth harmonic, and values for the constants a0, a1, and 
a2 are listed in Table 2. 

More Complex Networks
When I started this investigation, I had little idea how to simply 

analyze a pi network, and my first efforts led to quite complicated 
equations that were not very illuminating. It was only when I happened 
on the idea of transforming parallel resistances and reactances into an 

equivalent series pair that I was able to make progress. In this way, I 
was able to deduce a value for the Q of a pi network that effectively 
predicted bandwidth and harmonic attenuation, at least for larger 
values of Q. I began to wonder if the same approach would work for 
more complicated networks.

My first effort was to add a second inductor between the load 
resistor and the top of capacitor C2 in Figure 1 to form a pi-L network. 
By dividing the capacitance C2 into two parallel capacitors, C2A and 
C2B, the pi-L network can be transformed into a cascaded pair of 
networks, a pi network followed by a L network; this is illustrated in 
Figure 7. Furthermore, by selecting C2B  appropriately, the impedance 
looking into the input of the L network can be made a pure resistance, 
RV; this “virtual” resistance is drawn in dotted lines in Figure 7 and is 
the load resistance of the pi network and the source resistance for the 
L network. Analysis of the L network is simple, and we can use the 
results earlier in this paper for the pi network. 

Let Q2 be the quality factor for the L network. By transforming the 
series pair L2 and RL into an equivalent parallel pair, the L network is 
transformed into a simple parallel RLC network, from which we can 
show that the reactances of L2 and C2B, and the resistance of RV are 
given by the expressions of Equation 20.
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Next, let Q1 be the quality factor for the pi network. Equations 11, 
12 and 18, with L, C2, and RL replaced by L1, C2A, and RV, respectively, 
can then be used to calculate XC1, XC2A, and XL1. XC2 can then be 
calculated by combining XC2A and XC2B in parallel. 

What, then, is the quality factor, Q, for the composite network? 
According to Equation 1, it is the sum of the energies stored in the 
pi and in the pi-L networks, divided by the power dissipated in the 
source and load resistors (assuming losses in C1, C2, L1, and L2are 
small enough to be neglected).
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Figure 6 — These graphs plot the attenuation of second, third and fourth harmonics by a pi network as a function of Q. Data are shown for 
load resistance of 50 W and source resistances, RS, of 50, 500, and 5000 W.

Table 2
Fitted Values for Parameters in Equation AN = a0 + a1Q + a2Q 2

Harmonic	 a0 (dB)	 a1 (dB)	 a2 (dB)	 Accuracy (dB)
2	 –22.4	 –1.58	 0.0316	 ±0.4
3	 –34.0	 –1.62	 0.0328	 ±0.5
4	 –41.8	 –1.64	 0.0333	 ±0.5
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Figure 7 — Here, the pi-L network is divided into a pi network 
followed by an L network. The resistance looking into the input of the 

L network is RV; this is also the load resistance for the pi network. 
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where S1 and S2 are the average energies stored in the two networks, 
and PS and PL are the powers dissipated in the source and load 
resistances, respectively. Now look at each network separately. 
Network 1, the pi network, has as its load resistance RV, which 
dissipates a power PV. Then we obtain Equation 21.

VS PP
SfQ
+

π= 1
01 2 	 [Eq 21]

For network 2, the L network, we obtain Equation 22.

LV PP
SfQ
+

π= 2
02 2 	 [Eq 22]

Since RV is matched to RS by network 1, and RL is matched to RV 
by network 2, the powers dissipated in all three resistances are equal. 
With this result, we have proven Equation 23.

21 QQQ += 	 [Eq 23]

I modified the computer program described earlier to model pi-L 
networks and found that Q calculated in this way is a good predictor 
of bandwidth (at least for larger values of Q). Q was not a good 
measure of harmonic attenuation, however, which varied significantly 
as the source resistance was varied. 

I have explored even more complicated networks, such as two 
cascaded pi networks using the techniques described in this paper. 
With two pi networks, there are three independent parameters that 
have to be specified in order to uniquely define the network. For 
these three I chose Q1 and Q2, the quality factors of the individual pi 
networks, and RV, the “virtual” resistance looking into the input of the 
second network. Figure 8 shows the transfer function for one network 
where RL = 50 W, RS = 1800 W, RV = 300 W, Q1 = Q2 = 5, and with a 
design frequency of 1 MHz. 

Note that there are now two peaks rather than one in the transfer 
function, leading to a considerably broadened response. In fact, the 
actual 3 dB bandwidth is 342 kHz. The overall Q of this network 

is 10, so the predicted bandwidth would be 100 kHz, substantially 
less than the actual value. Each pi network, taken alone, would have 
had a single peak at 1 MHz, but the two together yield two peaks. 
Evidently, there are interactions between the two pi networks as the 
frequency is varied away from 1 MHz. From this and other examples 
I have worked out, I conclude that, in general, Q is no longer related 
in any simple way to the network bandwidth and level of harmonic 
attenuation. This is consistent with the comments of Wes Hayward 
quoted earlier in this paper. 

Discussion and Conclusions
This article has found that three existing definitions for the quality 

factor of pi networks found in the Amateur Radio literature are not 
good predictors of the bandwidths (and harmonic attenuations) of 
these circuits. Both empirical and theoretical analysis suggest that a 
better definition of Q, at least for predicting bandwidth and harmonic 
attenuation, is given by Equation 24.
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where RS and RL are the source and load resistances, respectively, and 
XC1 and XC2 are the input and output capacitive reactances of the pi 
network, respectively.

It appears to me that the methods employed in this paper can be 
extended to all networks containing three reactive components, with 
good results. 

I was able to extend my analysis to pi-L networks with good 
results for bandwidth prediction but not harmonic attenuation. 
Analysis of networks more complex than pi-L networks yielded 
values for Q that were not predictive of bandwidth; I am not sure that 
Q has much significance for these more complex networks.

There are, of course, limitations to what is presented in this paper. 
The two main limitations are:

1) My analysis assumes that the reactive elements are lossless, but 
all real inductors and, to a lesser extent, capacitors have loss.

2) The source and load resistances are assumed to be constant 
independent of frequency, but this is probably seldom the case. For 
example, pi networks are often used in power amplifiers to match 
the output impedance of the amplifier to an antenna, and antenna 
impedances vary with frequency. 

It would be well in any actual design to check the performance 
of circuits that include pi networks using one of the modern 
sophisticated computer circuit modeling programs, such as SPICE. 

During the process of the work reported here, I could not perform 
an exhaustive search of the technical literature on pi networks. The 
material in this paper is new to me, but I would not be surprised to find 
a paper somewhere that made similar remarks to the ones here. I hope 
the results are of interest to hams and other electronics experimenters.

Finally, I would like to express my appreciation to the hams that 
reviewed an earlier version of this paper. They identified several 
errors and made very helpful suggestions.

Bill Kaune, W7IEQ, is a retired physicist (BS, PhD). He is married 
and has two grown daughters and four grandchildren. Bill spent most of 
his career collaborating with biologists and epidemiologists researching 
the biological effects of power-frequency electric and magnetic fields. 
Along with Amateur Radio, Bill spends his time hiking, backpacking, 
and doing some volunteer work. Bill was first licensed in 1956 as a 
novice and then a general, but became inactive while in college. He 
was licensed again in 1998 and upgraded to the Amateur Extra class in 
2000. Bill is a member of the Jefferson County Amateur Radio Club and 
the ARRL. 
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Figure 8 — This graph shows the transfer function for a cascade of 
two pi networks. 
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