
 QEX – November/December 2010 1

James Ahlstrom, N2ADR

221 Pleasant Plains Rd, Stirling, NJ 07980; jahlstr@gmail.com

An All-Digital Transceiver for HF

1Notes appear on page 00.

Build your own HF transceiver using an FPGA and software.

In a previous article, I described a digi-
tal SSB exciter that used a personal com-
puter (PC), a field programmable gate array
(FPGA), and software.1 That design used an
Ethernet controller connected to a micro-
controller (MCU) and then connected to the
FPGA. The microcontroller ran the Ethernet
and IP code, leaving the FPGA free to do
the digital signal processing. The microcon-
troller was a bottleneck that slowed down
the data speed to barely acceptable levels. I
wanted to work at higher sample rates and
clock speeds, so I started this new project.

At first, I tried to connect the Ethernet
controller chip to both the MCU and the
FPGA, but this proved awkward. In the end,
I decided to eliminate the MCU and con-
nect the Ethernet controller directly to the
FPGA. This resulted in a high data rate but
meant that I had to write new Ethernet and
IP code for the FPGA and throw my MCU
code away. This was worrisome, as I had
never written a large FPGA program before.
I purchased some new Verilog books that
proved to be highly useful, thought about it
for a while, and then dove in.2,3

With the MCU gone, I could change to
a faster 10/100 megabit per second Ethernet
controller. The FPGA would now be at the
center of the design with the digital to analog
converter (DAC) transmitter chip connected
to it. Then I realized I could just add an ana-
log to digital converter (ADC) for receive,
and I would have a complete transceiver.

The Basics
For background, you might want to read

my original article. For digital signal pro-
cessing basics, be sure to see the book by
Lyons4 and the ARRL digital radio Web site5.
But if that is not handy, here is a crash course
in digital radio.

An ADC is an analog to digital con-
verter; it converts your antenna voltage to a
number. I am using a 14-bit ADC running at

122.88 MHz, and the numbers it measures
range from –8192 to +8191. These numbers
will be crunched by software to ultimately
result in received audio. To transmit, you
need a DAC: a digital to analog converter.
You take microphone audio, convert it to
numbers with a (different) ADC, crunch
those numbers and send them to the DAC for
direct conversion to RF. Then, amplify and
filter the RF and send it to your antenna. The
numbers we are talking about are actually
pairs of numbers, an in-phase and a quadra-
ture number, or an I/Q pair. These are most
easily thought of as a complex number in the
form x + jy. Or you could think of them as
representing both the amplitude and phase
in one number.

The software mostly consists of filters
and mixers just like in an analog radio.
A digital mixer is the multiplication by
cos(2πft) + j sin (2πft). You need to gen-

erate this I/Q number somehow, and the
CORDIC algorithm is a good choice.6 To
tune numbers with a digital mixer you feed
the I/Q pairs of numbers into a CORDIC
module, and get new I/Q pairs out the other
end. The new numbers represent the original
signals shifted in frequency by a constant
frequency; that is, they have been “mixed”.
The advantage that I/Q number pairs have
over plain numbers is best seen in a digital
mixer. Analog mixers always have images;
they produce sum and difference frequen-
cies. These digital mixers have no images.
They produce either a sum or a difference
frequency but not both.

The digital filters we are most interested
in are low-pass FIR and CIC filters. The
FIR (finite impulse response) filters can
have very nice pass-band and stop-band
responses, but they require hardware mul-
tipliers. The FPGA does have hardware

2 QEX – November/December 2010

multipliers but not enough to make a very big
filter. So we use some CIC filters, also. These
CIC (cascaded integrator-comb) low-pass fil-
ters are only effective near zero hertz. As we
move away from zero hertz to perhaps 1%
or 10% of their bandwidth, the remainder of
the stop-band has poor attenuation. But their
advantage is that they require no multiplica-
tion at all, are very fast, and are easy to pro-
gram in an FPGA. So a typical filter plan is
to use a few CIC filters and then follow these
by a single additional FIR filter to achieve the
total filtering required.

Another important digital radio concept
is sample rate reduction, or “decimation”.
Our ADC runs at 122.88 MHz and gener-
ates 14-bit samples, so its data rate is 1,720
megabits per second. We will not have much
luck sending that through a 100 megabit per
second Ethernet connection, so we will need
to reduce the sample rate substantially. To
do that, we first tune the original spectrum
of signals to “baseband”; that is, toward zero
hertz. Then, we low-pass filter the signal.
We can then reduce the sample rate by eight
times, for example, by keeping only every
eighth sample. We use decimation on the
receive path to reduce the sample rate. A
reduction by 512 times gives 240,000 sam-
ples per second. On the transmit side we need
to increase the sample rate (“interpolation”)
from 48 kHz to 122.88 MHz, an increase of
2,560 times. To increase the sample rate by
eight times, we send a sample and then send
seven zero samples. Both decimation and
interpolation are usually done in stages with
a rate change of two to maybe 40 instead of
all at once. They both require low-pass digital
filters at every rate change. I still find it amaz-
ing that the FPGA can handle all these calcu-

lations at the raw data rate of 1,720 megabits
per second.

Hardware Design
The hardware design is very simple. Its

block diagram is shown in Figure 1, a pho-
tograph of the PC board is shown in Figure
2, and a list of the major parts is shown in
Table 1. The FPGA is physically and logi-
cally the center of the design with the other
chips grouped around its edges. The Ethernet
controller is on the right in Figure 2 and is
connected to the FPGA with a 16-bit data
bus and some control signals. The Ethernet
controller has its own 25 MHz crystal, some
coupling and bypass capacitors, some load

resistors, and an RJ45 jack with built-in
magnetics (transformers). The controller is
a LAN9115 by SMSC and it operates full
or half duplex at 10 or 100 megabits per
second. It is a complete Ethernet solution
and includes its own PHY (correct physical
interface) and its own MAC (media access
control) with speed negotiation capability.
It has 16k bytes of memory shared between
transmit and receive, and it stores received
Ethernet packets until the FPGA gets around
to processing them.

The transmit DAC is located below the
FPGA in Figure 2 together with a smaller
8-bit DAC. The transmit DAC is 14 bits and
operates at the 122.88 MHz clock frequency.

Microphone
Personal
Computer

Ethernet
Controller

FPGA
ADCAmp

Rf In

Clock

DAC
Low Pass
Filter

Amp
Rf Out

5 Volt Key Tx
Level

Figure 1 – A block diagram of the transceiver.

Figure 2 -- The printed circuit board.

 QEX – November/December 2010 3

The 8-bit DAC generates 0.125 to 1.25 V
DC to control the output level of the transmit
DAC. I use this to reduce power to 50 watts
on 60 meters, and to compensate for lower
gain at higher frequencies in my ampli-
fier chain. The output of the transmit DAC
goes through a low-pass filter to a 2N5109
feedback amplifier.7 Note that these are built
directly on the board using “ugly” construc-
tion. Maybe next time I will make traces for
them. The low-pass filter is designed for an
input impedance of 180 Ω to reduce the loss
from the impedance matching.

Referring to Figure 1, on SSB transmit
the microphone audio is processed by the PC
into in-phase and quadrature samples (I/Q)
at 48 kilohertz, and sent via Ethernet to the
FPGA. The FPGA interpolates (increases
sample rate) and tunes these to the output
frequency as described below, and sends the
digital data to the DAC. The analog RF from
the DAC is low-pass filtered and amplified,
and sent to the power amplifier chain. For
CW, note the 5 V key input. This is high
for key down and low (0 V) for key up. It is
used to directly generate CW in the FPGA to
eliminate any pauses or delays that may be
introduced by the PC.

The receive circuitry is located to the left
of the FPGA in Figure 2. Input RF goes to
a Minicircuits 1:4 unbalanced to balanced
transformer, and then to an LTC6405 bal-
anced preamp. The preamp output goes
through a low-pass filter to the ADC. The
low-pass filter is used to reduce noise above
the Nyquist frequency of 61.44 MHz. This
noise would fold back into the pass-band and
degrade our noise figure. The ADC is a 14-bit
Texas Instruments ADS5500IPAP operating
at the 122.88 MHz clock. If the preamp and
filter were omitted, the ADC could be used
up to its analog bandwidth limit of 750 MHz,
but that would compromise the performance
at HF. The ADC connects to the FPGA and
sends 14 bits of data plus a clock that is syn-
chronous with the data. Referring again to
Figure 1, the ADC samples go to the FPGA
where they are tuned to baseband, decimated
(sample rate reduced) and sent to the PC via
Ethernet.

Below and to the right of the DAC is the
Crystek 122.88 MHz low phase noise clock
oscillator. Note that this connects directly to
the ADC and DAC as well as the FPGA. This
creates some problems, but I was worried
about degrading the phase noise if I ran the
clock through the FPGA to the other chips.
The strange clock frequency was chosen
because it is an integer multiple of 48 kHz,
and the part was available from Digikey. We
eventually need to play received audio at a
rate that the sound card can handle, and 48
kHz is a good choice. If the original clock
were not an integer multiple of the play rate,

we would need non-integer decimation, and
that is much more complicated.

Directly above the FPGA is its flash
memory program storage chip and a 5X2
header to program the flash. Unlike a micro-
controller, an FPGA lacks its own flash, so
it reads its program out of the memory chip
on power up. You may notice a bank of eight
small LED’s above and to the right of the
DAC. These were used for debugging dur-
ing development, and enabled me to output
a byte of data. Now they are used to indicate
various error conditions. On the left wall of
the box are six LED’s. Three connect to the
Ethernet controller, and indicate link, activ-
ity, speed and full duplex. The other three
connect to the FPGA and indicate ADC clip
(over range), errors, and on-the-air status. On
the top wall of the box are three low dropout
voltage regulators for 5 V, 3.3 V and 1.2 V.
There is another 2.5 V regulator on the board
to the top right. Input power to the box is
6.0 V.

The PC board layout was done with
Eagle8 and all the files including a schematic
are available from the authors Web site9 or
from the ARRL’s QEX binaries site.10 The
parts used were chosen for performance, but
also for availability and ease of construc-
tion. I chose parts with feet (OK, small feet)
because I was not quite ready to try to solder
leadless packages.

To me, the most interesting thing about
this hardware design is that it doesn’t do
anything in particular. It has an Ethernet to
FPGA link that could be carrying anything,
an RF output from a DAC that could gener-
ate anything, and an RF input to an ADC
that could sample anything. Just looking at
the hardware, it could be a transceiver. But
it could also be a spectrum analyzer with a
tracking generator. To make it a transceiver
we need software.

FPGA State Machines
FPGA software is intrinsically parallel,

and, left to itself, it will execute every line

of code at once. That can be useful, but it
is not always what we want. For example,
reading from a memory bus requires setting
the address on the bus, waiting, asserting the
read control line, waiting, reading the data
from the bus, waiting, and finally de-assert-
ing the read line. These operations must be
sequential and correctly timed. Suppose we
receive an Ethernet packet. We must examine
the packet headers to decide what block of
code should handle the packet, and this also
requires sequential operations.

To obtain sequential operation from
an FPGA, we use a state machine. A state
machine has a state variable that can assume
one of a number of values. Based on that
value, we perform certain operations. To
perform different operations in fixed order,
we change the value of the state variable
to the next state. For example, to program
the memory bus read described above, we
would start in the “set address” state. This
state would set the address on the bus, set
the “next state” variable to “assert read,” and
set the state to “wait.” At the next clock, the
state would be “wait.” In the “wait” state
we increment a counter, wait for a timeout,
and then set the state to the value of “next
state.” In our example, after the timeout, the
state would change to “assert read.” At the
next clock, our state is “assert read,” so we
assert the read control line, set “next state” to
“read data,” and set the state to “wait.” After
another wait interval, the state would change
to “read data.” At the next clock, our state
is “read data,” so we read the data from the
bus and store it somewhere, set “next state”
to “de-assert read,” and enter another wait
state. After the wait, the “de-assert read” state
de-asserts the read control line, and changes
the state to an “idle” state. Much of the time
the FPGA has nothing to do, and is waiting
to receive an Ethernet packet, or to have an
ADC data block available to send. The “idle”
 state typically checks to see if there is any
work to do. If there is, it changes the state
according to the job to be done.

Table 1
Major Parts List
Item	 Part Number
FPGA	 Altera EP3C25Q240C8N, 240 pins
FPGA Flash Memory	 EPCS16SI8N in 8-SOIC
Ethernet Controller	 LAN9115 by SMSC in 100-TQFP
Clock	 Crystek 122.88 MHz CVHD-950-122.880
Receive ADC	 125 MHz 14-bit Texas Instruments ADS5500IPAP in 64-TQFP
ADC Preamp	 Linear Technology LTC6405 in 8-MSOP
Transmit DAC	 Analog Devices 14-bit AD9744 in 28-TSSOP
Transmit Level Control DAC	 Analog Devices AD7801 in 20-TSSOP
RJ45 Ethernet Jack	 Stewart SI-50170-F
Ferrite Chips	 Murata BLM41PG102SN1L in 1806

4 QEX – November/December 2010

FPGA Software
There are three major blocks of soft-

ware running in the FPGA: handle Ethernet
reads and writes, write transmit data to the
DAC, and read receive data from the ADC.
All three blocks run simultaneously. All
FPGA code is written in the Verilog lan-
guage. The FPGA has a fixed IP address of
192.168.2.196, and uses three UDP ports.
Port 0xBC77 receives control for the ADC
samples and sends sample from that port.
Port 0xBC78 receives control data such
as transmit frequency and mode. And port
0xBC79 receives the transmit audio.

The simplest block of software reads the
14-bit data from the ADC at the clock rate
of 122.88 MHz. It then tunes the data to
baseband using CORDIC, and reduces the
sample rate by a factor of eight with the first
CIC filter. The data then goes to a second
CIC filter that reduces the data rate by a fac-
tor of 2, 4, 5, 8, 10, 20 or 40 as programmed
by a control byte sent from the PC. The data
then goes to a final FIR filter that reduces the
rate by eight. We now have a final sample
rate of 48 to 960 kHz. Samples consist of
two 24-bit numbers (I and Q), and are writ-
ten to a memory buffer for transmission to
the PC via Ethernet. The data rate at 960
kHz is 46.08 megabits per second or a little
higher if we include packet overhead. That is
a significant part of the 100 megabit Ethernet
bandwidth and will stress all but the fastest
PC’s and Ethernet switches. At this rate we
can see almost a megahertz of spectrum, and
that is not much use on HF. But it could be
useful on microwave frequencies if the hard-
ware is used with a transverter. I usually set

my sample rate to 240 kHz as a compromise
between seeing a good part of the band, and
having the signals be wide enough to tune
accurately with the mouse.

The next block of code is used for trans-
mit. For SSB transmit, the PC sends audio
samples at a rate of 48 kHz, and these are
stored in a memory buffer in the FPGA.
When the buffer is half full, the FPGA starts
reading the samples; it then interpolates them
by factors of 20, 16 and 8 in CIC filters and
sends them to the DAC. The buffer provides
a store of samples in case the PC samples
are delayed. For CW transmit, the PC is not
directly involved. Instead, the FPGA reads
its key input pin. When the key goes down, a
counter counts up to a maximum value, and
when the key goes up, the counter counts
down to zero. The counter is the input to the
CORDIC mixer that tunes the DC counter to
the output frequency. The result is a shaped
key envelope with no delays from the PC.

The most complicated block of FPGA
code is used to manage the Ethernet control-
ler. First we initialize a register in the FPGA
to zero. Then on power up, we start counting
this register until we reach a timeout value.
Until we reach timeout, we assert a reset pin
connected to the Ethernet controller. Actually
this reset pin is connected to all chips that
can be reset, and is monitored by software
routines that need initialization. In this way,
we insure that power is stable before we start
operating.

Next, we program some registers in the
Ethernet controller by writing fixed byte
values on the bus, and then we change the
state of the FPGA state machine to “idle,”
In the “idle” state, the FPGA first checks

whether there is ADC data ready to be sent
to the PC. If there is, it transmits an Ethernet
packet with 42 bytes of header, a sequence
byte, a status byte that includes the key up/
down state, and 1,440 bytes of data con-
sisting of 240 samples. If there is no ADC
data, we check to see if an Ethernet packet
was received. If no packet was received, we
check the Ethernet controller for error condi-
tions, and turn on the on-board LED’s for
any errors found. Then we enter a short wait
and repeat.

If we receive an Ethernet packet, we read
the first 80 bytes into a buffer, and examine
the buffer to see what to do next. If the packet
is an ARP request for our IP address, we
send an ARP response. The ARP protocol is
used to associate Ethernet addresses with IP
addresses, and it makes the transceiver play
nicely on your network. If the packet is a
ping request to our IP address, we reply with
a ping response. Ping isn’t completely neces-
sary, but it is useful and should be included
in any Ethernet appliance. If the packet is a
UDP packet addressed to us we continue to
process it. Otherwise it is silently discarded,
and we read and discard any remaining bytes
in the Ethernet controller to clear it for the
next packet.

If the UDP packet is addressed to our
ADC sample port and has data 0x7272, we
record the return address and use it to send
our ADC samples. That way we do not have
to program the IP address of the PC into the
FPGA. If the data is 0x7373, we stop sending
ADC data. If the UDP packet is addressed
to our control port, we read the transmit fre-
quency, receive frequency, the transmit level
(for the 8-bit DAC), the transmit mode (CW

Rx Out

Low Pass
40 MHz

AT200PC
Ant Tuner

Switched
Low Pass

Switched
High Pass

Exciter
1-30 MHz

MCU
Sequencer

PC

Rx
Rx

Tx Tx 10W

+5.0 V

+5.0 V

T/R

T/R

Tx

Key and PTT

Ethernet
Key Status

Switched LNA and Atten

140 W

Figure 3 – A block diagram of my station control.

 QEX – November/December 2010 5

or SSB) and the requested stage two decima-
tion for the ADC. We then echo the control
packet back to the sender as an acknowledge-
ment. If the UDP packet is addressed to our
transmit audio port, we skip the two byte
sequence number, write the audio from our
buffer to memory, and then copy the remain-
der of the audio from the Ethernet controller
to memory. The data is two 16-bit numbers
(I and Q) at 48 kHz, or 1.536 megabits per
second (plus overhead), a modest rate even
on 10 megabit Ethernet.

Station Control
To make a complete station the exciter has

to be combined with a power amplifier chain
and filters. A block diagram of my station
is shown in Figure 3. The antenna tuner is
an AT200PC by LDG controlled by the PC
through a USB to serial adapter. There are
two filter boxes consisting of conventional
LC filters switched by relays. The low-pass
filters are the usual high power (150 W)
transmit filters. The high-pass filters are low
power LC filters. The combination results
in a band pass response on both receive and
transmit.

On receive, the signal goes through the
low-pass filter, the high-pass filter, and then
possibly through a switched preamp or atten-
uators. On transmit, the RF output from the
exciter goes through the high-pass filter, then
to a series of power amplifiers, then through
a TVI filter, and finally through the low-pass
filter to the antenna. My current antenna is a
fan dipole for 60, 40 and 20 meters.

The relays require sequenced switching,
so the key is connected to a microcontroller
that generates keying signals for the relays
and exciter. When the key goes down, the
relays are switched first, followed by the
exciter, and the reverse on key up. Note that

there is no key line to the PC even though
the PC needs to know the key state so it can
mute the audio on transmit and substitute a
sidetone on CW. The key status is sent to the
PC using Ethernet. It is encoded in the sec-
ond byte of data in an ADC sample block. At
one time I used a pin on the parallel port, but
newer PC’s often don’t come with a parallel
or serial port.

The station control shown is quite generic,
and has been used with several past versions
of my station. It worked just as well with my
SDR-IQ receiver and 2008 exciter. I am con-
tinuing to work on the power amplifier chain,
as I am having trouble keeping the gain flat
with frequency and the IMD low.

Quisk Software

My Quisk software running on a PC
controls my whole station. My PC is an old
3 GHz Pentium 4 with one core. The PC
controls the AT200PC antenna tuner through
a USB to serial adapter; it controls the filter
boxes through Ethernet and an I2C gateway;
and it directly controls the transceiver by
Ethernet. A screenshot of Quisk is shown in
Figure 4. It shows the whole 40 meter band
sampled at 480,000 samples per second.
Quisk software is available on my Web site.11

Quisk was originally designed for CW
QSK operation using the sound card as
the receiver, and a DDS chip for transmit.
Gradually I added the capability to control
more hardware: an SDR-IQ receiver by
RfSpace, my 2008 exciter, an AOR receiver
with an IF output (as a panadapter), and
now my transceiver. Quisk uses an external
hardware file written in the Python program-
ming language to control its hardware. To
use different hardware, you just change this
file. You can use one of the hardware files
that comes with Quisk, or write your own.

Figure 4 – A screen shot of Quisk running on my PC.

There is also a way to add additional controls
to Quisk by adding a custom Python “wid-
gets” file. Python is a powerful language that
is very easy to learn. I use it for Quisk and
for nearly everything else. Its complex data
type is handy for impedance calculations,
for example.

The top level of Quisk is written in
Python, and controls the graphical user inter-
face (GUI), the graph and waterfall screens,
and any custom hardware. The rest of Quisk
is written in the C language, and this code
is responsible for the sound cards, the USB
interface, the Ethernet IP ports, the FFT (fast
Fourier transform) and the digital signal pro-
cessing. Linking Python with C in this way is
very common. The main program quisk.py is
2300 lines, and the C code is 4500 lines. This
is a very small program.

Quisk was never intended to be a “prod-
uct” in the sense that it had every feature
imaginable and could run any hardware right
out of the box. I always saw it as a starting
point for other people’s homebrew proj-
ects; something that would be simple and
understandable, and easy to adapt to differ-
ent hardware and software designs. That is
one reason that Quisk runs on Linux. Linux
comes with Python and C compilers, and it
provides a rich software development envi-
ronment for free. Being simple, small and
easy to change is one of the design goals of
Quisk. But even though Quisk is simple, and
after using other available radio software, I
find I prefer Quisk. Some of that is no doubt
pride of authorship, but I want my radio to
look like a radio, not a Windows program,
even though it is an image on a computer
screen. And I find that Quisk is easy to tune
and has the features I need.

Although I use Quisk to control my trans-
ceiver, that is not a requirement. The trans-

6 QEX – November/December 2010

ceiver is simply sending and receiving I/Q
samples just like any other software defined
radio. Any software can provide the data the
transceiver requires. All that is needed is an
Ethernet IP/UDP interface, and that is simple
to supply.

Quisk Internals
Quisk runs in two threads, a GUI thread

that runs the user interface, the screens and
the FFT, and a second thread that is respon-
sible for reading and writing the sound and
performing digital signal processing. When
used with my transceiver, Quisk operates as
follows. On receive, the sound thread reads a
UDP port at timed intervals and collects any
ADC samples available. These samples are
first copied into an array for the FFT. When
enough samples are available, the GUI thread
will perform the FFT, average the results,
and eventually update the screen. The sound
thread then tunes the signal to baseband
in a digital mixer, reduces the sample rate,
filters the signal and divides it into an I/Q
pair and demodulates it. For FM, there are
additional filters at this point. There may be
more decimation or interpolation depending
on the sample rate and source. Finally, AGC
is applied and the sound is played on the
sound card.

For SSB transmit, the sound thread reads
the microphone and boosts the high frequen-
cies in a digital filter. It then filters the audio
and divides it into an I/Q pair. This signal
is mixed to a higher frequency, clipped, re-
filtered, and mixed back down to baseband.
These audio samples are sent to the UDP port
and then to the transceiver.

There are a few other interesting features.
The S-meter in Quisk is calculated by squar-
ing and averaging the correct number of FFT
bins to equal the indicated filter width. This
means that Quisk has a true RMS voltmeter
with a known noise width that can be used to
make noise measurements. Quisk can gen-
erate a two-tone test pattern to make IMD
measurements. Quisk generates these tones
in the PC software and sends them as an
SSB signal. And Quisk has a spot switch that
sends a CW carrier in SSB mode. That is not
too exciting, except that since everything is
digital, the level is guaranteed to be at PEP.

Problems
I am very happy with this transceiver

hardware design, but there are still some
unresolved problems and directions for
future work. I measured the noise figure at
23 dB. Although this is usable, I was expect-
ing a noise figure closer to the preamp noise
at 200 Ω of 8 dB. I found this very confus-
ing, but thanks to an email12 from Jeff Millar,
WA1HCO, I now understand the high noise
figure. He calculated the noise figure of the
ADC alone to be 30 dB. The preamp gain is
not sufficient to dominate the noise figure,
and using the usual formula F = F1 + (F2 - 1)
/ G1 gives the net noise figure I observe. I
do not want more preamp gain, as that would
degrade the dynamic range. I have an addi-
tional preamp external to the transceiver that
I can switch in for 20 meters and up. The
purpose of the preamp is to make it easier to
drive the receive input.

I am also worried about the clock integ-
rity. I connected the clock oscillator to three
IC’s, but there is no spec for how many IC’s
the clock will drive. I could connect the
clock to the FPGA and run the clock straight
through, but that might degrade the jitter.
I could use a clock distribution IC, but the
ones I saw had worse specs than my oscilla-
tor. I don’t have any evidence that the clock is
questionable, but I don’t have any equipment
to measure the clock noise either.

And then there is the power ampli-
fier chain. The IMD spec out of the DAC
is exemplary, but it quickly degrades with
amplification. On 10 meters, it winds up
about 23 dB below one tone, and I am work-
ing on improving this. Even good quality
commercial ham equipment seems to have
IMD specs in the low 30 dB range below
PEP. If I can get a cleaner power amplifier
chain, then maybe I can bend the response
curve in software to improve the IMD.

Conclusion
It has been great fun working with these

new digital IC’s and getting a lot of hands-on
experience with digital signal processing. I
am not convinced that an all-digital radio is
better than the best analog radio, but I think
it is easier to homebrew one, especially since
all the software is readily available for free.
When I get on the air with it and say that
my rig is homebrew, my ham friends take an
interest, and that is very gratifying. I would
also like to thank the hams that have emailed

me and expressed an interest in my work.
I also learned that even in this digital

age, some things in radio never change. As
pointed out by Wes Hayward et al, building
a receiver is a great way to learn humility.
If there were a magic bullet formula for a
receiver, they would all be built the same
way, but instead, receiver design remains a
challenge. And filters remain at the heart of
radio whether digital or analog. And then
there are antennas. It was amazing to me how
much better my first digital receiver worked
when attached to a good antenna! When I
tune across the bands, I hear hams with digi-
tal rigs, analog rigs, and some with classic
Collins or Drake gear, but one thing I know
for sure; they definitely have an antenna.

James Ahlstrom, N2ADR, was first licensed
as KN3MXU in 1960. He received a BS in
physics from Villanova University in 1967 and
a PhD in physics from Cornell University in
1972. He then moved to New York to work in
the financial business. He is currently a one-
third owner of Interet Corporation, Millburn,
New Jersey. Interet publishes software to ana-
lyze leveraged equipment leases. His license
lapsed while raising his family, and he was
re-licensed in 2006. He currently holds an
Amateur Extra class license. Besides Amateur
Radio, he enjoys bird watching, skiing, music
and working out at the gym.

Notes
1James C. Ahlstrom, “An All-Digital SSB

Exciter for HF”, QEX May/June 2008,
pp 3-10.

2J. Bhasker, Verilog HDL Synthesis, A
Practical Primer, Star Galaxy Publishing,
1998.

3J. Bhasker, A Verilog HDL Primer, Third
Edition, Star Galaxy Publishing, 2005.

4Richard G. Lyons, Understanding Digital
Signal Processing, Second Edition, Prentice
Hall, 1996.

5 www.arrl.org/software-defined-radio
6Ray Andraka, “A Survey of CORDIC

Algorithms for FPGA Based Computers”,
www.andraka.com/files/crdcsrvy.pdf.

7Wes Hayward, Rick Campbell and Bob
Larkin, Experimental Methods in RF Design,
ARRL, 2003, ISBN: 0-87259-879-9.

8www.cadsoftusa.com.
9www.james.ahlstrom.name/transceiver
10www.arrl.org/qexfiles
11www.james.ahlstrom.name/quisk
12 Jeff Millar, WA1HCO, personal communica-

tion

