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An All-Digital Transceiver for HF

1Notes appear on page 00.

Build your own HF transceiver using an FPGA and software.

In a previous article, I described a digi-
tal SSB exciter that used a personal com-
puter (PC), a field programmable gate array 
(FPGA), and software.1 That design used an 
Ethernet controller connected to a micro-
controller (MCU) and then connected to the 
FPGA. The microcontroller ran the Ethernet 
and IP code, leaving the FPGA free to do 
the digital signal processing. The microcon-
troller was a bottleneck that slowed down 
the data speed to barely acceptable levels. I 
wanted to work at higher sample rates and 
clock speeds, so I started this new project.

At first, I tried to connect the Ethernet 
controller chip to both the MCU and the 
FPGA, but this proved awkward. In the end, 
I decided to eliminate the MCU and con-
nect the Ethernet controller directly to the 
FPGA. This resulted in a high data rate but 
meant that I had to write new Ethernet and 
IP code for the FPGA and throw my MCU 
code away. This was worrisome, as I had 
never written a large FPGA program before. 
I purchased some new Verilog books that 
proved to be highly useful, thought about it 
for a while, and then dove in.2,3

With the MCU gone, I could change to 
a faster 10/100 megabit per second Ethernet 
controller. The FPGA would now be at the 
center of the design with the digital to analog 
converter (DAC) transmitter chip connected 
to it. Then I realized I could just add an ana-
log to digital converter (ADC) for receive, 
and I would have a complete transceiver.

The Basics
For background, you might want to read 

my original article. For digital signal pro-
cessing basics, be sure to see the book by 
Lyons4 and the ARRL digital radio Web site5. 
But if that is not handy, here is a crash course 
in digital radio.

An ADC is an analog to digital con-
verter; it converts your antenna voltage to a 
number. I am using a 14-bit ADC running at 

122.88 MHz, and the numbers it measures 
range from –8192 to +8191. These numbers 
will be crunched by software to ultimately 
result in received audio. To transmit, you 
need a DAC: a digital to analog converter. 
You take microphone audio, convert it to 
numbers with a (different) ADC, crunch 
those numbers and send them to the DAC for 
direct conversion to RF. Then, amplify and 
filter the RF and send it to your antenna. The 
numbers we are talking about are actually 
pairs of numbers, an in-phase and a quadra-
ture number, or an I/Q pair. These are most 
easily thought of as a complex number in the 
form x + jy. Or you could think of them as 
representing both the amplitude and phase 
in one number.

The software mostly consists of filters 
and mixers just like in an analog radio. 
A digital mixer is the multiplication by 
cos(2πft) + j sin (2πft). You need to gen-

erate this I/Q number somehow, and the 
CORDIC algorithm is a good choice.6 To 
tune numbers with a digital mixer you feed 
the I/Q pairs of numbers into a CORDIC 
module, and get new I/Q pairs out the other 
end. The new numbers represent the original 
signals shifted in frequency by a constant 
frequency; that is, they have been “mixed”. 
The advantage that I/Q number pairs have 
over plain numbers is best seen in a digital 
mixer. Analog mixers always have images; 
they produce sum and difference frequen-
cies. These digital mixers have no images. 
They produce either a sum or a difference 
frequency but not both.

The digital filters we are most interested 
in are low-pass FIR and CIC filters. The 
FIR (finite impulse response) filters can 
have very nice pass-band and stop-band 
responses, but they require hardware mul-
tipliers. The FPGA does have hardware 
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multipliers but not enough to make a very big 
filter. So we use some CIC filters, also. These 
CIC (cascaded integrator-comb) low-pass fil-
ters are only effective near zero hertz. As we 
move away from zero hertz to perhaps 1% 
or 10% of their bandwidth, the remainder of 
the stop-band has poor attenuation. But their 
advantage is that they require no multiplica-
tion at all, are very fast, and are easy to pro-
gram in an FPGA. So a typical filter plan is 
to use a few CIC filters and then follow these 
by a single additional FIR filter to achieve the 
total filtering required.

Another important digital radio concept 
is sample rate reduction, or “decimation”. 
Our ADC runs at 122.88 MHz and gener-
ates 14-bit samples, so its data rate is 1,720 
megabits per second. We will not have much 
luck sending that through a 100 megabit per 
second Ethernet connection, so we will need 
to reduce the sample rate substantially. To 
do that, we first tune the original spectrum 
of signals to “baseband”; that is, toward zero 
hertz. Then, we low-pass filter the signal. 
We can then reduce the sample rate by eight 
times, for example, by keeping only every 
eighth sample. We use decimation on the 
receive path to reduce the sample rate.  A 
reduction by 512 times gives 240,000 sam-
ples per second. On the transmit side we need 
to increase the sample rate (“interpolation”) 
from 48 kHz to 122.88 MHz, an increase of 
2,560 times. To increase the sample rate by 
eight times, we send a sample and then send 
seven zero samples. Both decimation and 
interpolation are usually done in stages with 
a rate change of two to maybe 40 instead of 
all at once. They both require low-pass digital 
filters at every rate change. I still find it amaz-
ing that the FPGA can handle all these calcu-

lations at the raw data rate of 1,720 megabits 
per second.

Hardware Design
The hardware design is very simple. Its 

block diagram is shown in Figure 1, a pho-
tograph of the PC board is shown in Figure 
2, and a list of the major parts is shown in 
Table 1. The FPGA is physically and logi-
cally the center of the design with the other 
chips grouped around its edges. The Ethernet 
controller is on the right in Figure 2 and is 
connected to the FPGA with a 16-bit data 
bus and some control signals. The Ethernet 
controller has its own 25 MHz crystal, some 
coupling and bypass capacitors, some load 

resistors, and an RJ45 jack with built-in 
magnetics (transformers). The controller is 
a LAN9115 by SMSC and it operates full 
or half duplex at 10 or 100 megabits per 
second. It is a complete Ethernet solution 
and includes its own PHY (correct physical 
interface) and its own MAC (media access 
control) with speed negotiation capability. 
It has 16k bytes of memory shared between 
transmit and receive, and it stores received 
Ethernet packets until the FPGA gets around 
to processing them.

The transmit DAC is located below the 
FPGA in Figure 2 together with a smaller 
8-bit DAC. The transmit DAC is 14 bits and 
operates at the 122.88 MHz clock frequency. 
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Figure 1 – A block diagram of the transceiver.

Figure 2 -- The printed circuit board.
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The 8-bit DAC generates 0.125 to 1.25 V 
DC to control the output level of the transmit 
DAC. I use this to reduce power to 50 watts 
on 60 meters, and to compensate for lower 
gain at higher frequencies in my ampli-
fier chain. The output of the transmit DAC 
goes through a low-pass filter to a 2N5109 
feedback amplifier.7 Note that these are built 
directly on the board using “ugly” construc-
tion. Maybe next time I will make traces for 
them. The low-pass filter is designed for an 
input impedance of 180 Ω to reduce the loss 
from the impedance matching.

Referring to Figure 1, on SSB transmit 
the microphone audio is processed by the PC 
into in-phase and quadrature samples (I/Q) 
at 48 kilohertz, and sent via Ethernet to the 
FPGA. The FPGA interpolates (increases 
sample rate) and tunes these to the output 
frequency as described below, and sends the 
digital data to the DAC. The analog RF from 
the DAC is low-pass filtered and amplified, 
and sent to the power amplifier chain. For 
CW, note the 5 V key input. This is high 
for key down and low (0 V) for key up. It is 
used to directly generate CW in the FPGA to 
eliminate any pauses or delays that may be 
introduced by the PC.

The receive circuitry is located to the left 
of the FPGA in Figure 2. Input RF goes to 
a Minicircuits 1:4 unbalanced to balanced 
transformer, and then to an LTC6405 bal-
anced preamp. The preamp output goes 
through a low-pass filter to the ADC. The 
low-pass filter is used to reduce noise above 
the Nyquist frequency of 61.44 MHz. This 
noise would fold back into the pass-band and 
degrade our noise figure. The ADC is a 14-bit 
Texas Instruments ADS5500IPAP operating 
at the 122.88 MHz clock. If the preamp and 
filter were omitted, the ADC could be used 
up to its analog bandwidth limit of 750 MHz, 
but that would compromise the performance 
at HF. The ADC connects to the FPGA and 
sends 14 bits of data plus a clock that is syn-
chronous with the data. Referring again to 
Figure 1, the ADC samples go to the FPGA 
where they are tuned to baseband, decimated 
(sample rate reduced) and sent to the PC via 
Ethernet.

Below and to the right of the DAC is the 
Crystek 122.88 MHz low phase noise clock 
oscillator. Note that this connects directly to 
the ADC and DAC as well as the FPGA. This 
creates some problems, but I was worried 
about degrading the phase noise if I ran the 
clock through the FPGA to the other chips. 
The strange clock frequency was chosen 
because it is an integer multiple of 48 kHz, 
and the part was available from Digikey. We 
eventually need to play received audio at a 
rate that the sound card can handle, and 48 
kHz is a good choice. If the original clock 
were not an integer multiple of the play rate, 

we would need non-integer decimation, and 
that is much more complicated.

Directly above the FPGA is its flash 
memory program storage chip and a 5X2 
header to program the flash. Unlike a micro-
controller, an FPGA lacks its own flash, so 
it reads its program out of the memory chip 
on power up. You may notice a bank of eight 
small LED’s above and to the right of the 
DAC. These were used for debugging dur-
ing development, and enabled me to output 
a byte of data. Now they are used to indicate 
various error conditions. On the left wall of 
the box are six LED’s. Three connect to the 
Ethernet controller, and indicate link, activ-
ity, speed and full duplex. The other three 
connect to the FPGA and indicate ADC clip 
(over range), errors, and on-the-air status. On 
the top wall of the box are three low dropout 
voltage regulators for 5 V, 3.3 V and 1.2 V. 
There is another 2.5 V regulator on the board 
to the top right. Input power to the box is 
6.0 V.

The PC board layout was done with 
Eagle8 and all the files including a schematic 
are available from the authors Web site9 or 
from the ARRL’s QEX binaries site.10 The 
parts used were chosen for performance, but 
also for availability and ease of construc-
tion. I chose parts with feet (OK, small feet) 
because I was not quite ready to try to solder 
leadless packages.

To me, the most interesting thing about 
this hardware design is that it doesn’t do 
anything in particular. It has an Ethernet to 
FPGA link that could be carrying anything, 
an RF output from a DAC that could gener-
ate anything, and an RF input to an ADC 
that could sample anything. Just looking at 
the hardware, it could be a transceiver. But 
it could also be a spectrum analyzer with a 
tracking generator. To make it a transceiver 
we need software.

FPGA State Machines
FPGA software is intrinsically parallel, 

and, left to itself, it will execute every line 

of code at once. That can be useful, but it 
is not always what we want. For example, 
reading from a memory bus requires setting 
the address on the bus, waiting, asserting the 
read control line, waiting, reading the data 
from the bus, waiting, and finally de-assert-
ing the read line. These operations must be 
sequential and correctly timed. Suppose we 
receive an Ethernet packet. We must examine 
the packet headers to decide what block of 
code should handle the packet, and this also 
requires sequential operations.

To obtain sequential operation from 
an FPGA, we use a state machine. A state 
machine has a state variable that can assume 
one of a number of values. Based on that 
value, we perform certain operations. To 
perform different operations in fixed order, 
we change the value of the state variable 
to the next state. For example, to program 
the memory bus read described above, we 
would start in the “set address” state. This 
state would set the address on the bus, set 
the “next state” variable to “assert read,” and 
set the state to “wait.” At the next clock, the 
state would be “wait.” In the “wait” state 
we increment a counter, wait for a timeout, 
and then set the state to the value of “next 
state.” In our example, after the timeout, the 
state would change to “assert read.” At the 
next clock, our state is “assert read,” so we 
assert the read control line, set “next state” to 
“read data,” and set the state to “wait.” After 
another wait interval, the state would change 
to “read data.” At the next clock, our state 
is “read data,” so we read the data from the 
bus and store it somewhere, set “next state” 
to “de-assert read,” and enter another wait 
state. After the wait, the “de-assert read” state 
de-asserts the read control line, and changes 
the state to an “idle” state. Much of the time 
the FPGA has nothing to do, and is waiting 
to receive an Ethernet packet, or to have an 
ADC data block available to send. The “idle” 
 state typically checks to see if there is any 
work to do. If there is, it changes the state 
according to the job to be done.

Table 1
Major Parts List
Item	 Part Number
FPGA	 Altera EP3C25Q240C8N, 240 pins
FPGA Flash Memory	 EPCS16SI8N in 8-SOIC
Ethernet Controller	 LAN9115 by SMSC in 100-TQFP
Clock	 Crystek 122.88 MHz CVHD-950-122.880
Receive ADC	 125 MHz 14-bit Texas Instruments ADS5500IPAP in 64-TQFP
ADC Preamp	 Linear Technology LTC6405 in 8-MSOP
Transmit DAC	 Analog Devices 14-bit AD9744 in 28-TSSOP
Transmit Level Control DAC	 Analog Devices AD7801 in 20-TSSOP
RJ45 Ethernet Jack	 Stewart  SI-50170-F
Ferrite Chips	 Murata BLM41PG102SN1L in 1806
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FPGA Software
There are three major blocks of soft-

ware running in the FPGA: handle Ethernet 
reads and writes, write transmit data to the 
DAC, and read receive data from the ADC. 
All three blocks run simultaneously. All 
FPGA code is written in the Verilog lan-
guage. The FPGA has a fixed IP address of 
192.168.2.196, and uses three UDP ports. 
Port 0xBC77 receives control for the ADC 
samples and sends sample from that port. 
Port 0xBC78 receives control data such 
as transmit frequency and mode. And port 
0xBC79 receives the transmit audio.

The simplest block of software reads the 
14-bit data from the ADC at the clock rate 
of 122.88 MHz. It then tunes the data to 
baseband using CORDIC, and reduces the 
sample rate by a factor of eight with the first 
CIC filter. The data then goes to a second 
CIC filter that reduces the data rate by a fac-
tor of 2, 4, 5, 8, 10, 20 or 40 as programmed 
by a control byte sent from the PC. The data 
then goes to a final FIR filter that reduces the 
rate by eight. We now have a final sample 
rate of 48 to 960 kHz. Samples consist of 
two 24-bit numbers (I and Q), and are writ-
ten to a memory buffer for transmission to 
the PC via Ethernet. The data rate at 960 
kHz is 46.08 megabits per second or a little 
higher if we include packet overhead. That is 
a significant part of the 100 megabit Ethernet 
bandwidth and will stress all but the fastest 
PC’s and Ethernet switches. At this rate we 
can see almost a megahertz of spectrum, and 
that is not much use on HF. But it could be 
useful on microwave frequencies if the hard-
ware is used with a transverter. I usually set 

my sample rate to 240 kHz as a compromise 
between seeing a good part of the band, and 
having the signals be wide enough to tune 
accurately with the mouse.

The next block of code is used for trans-
mit. For SSB transmit, the PC sends audio 
samples at a rate of 48 kHz, and these are 
stored in a memory buffer in the FPGA. 
When the buffer is half full, the FPGA starts 
reading the samples; it then interpolates them 
by factors of 20, 16 and 8 in CIC filters and 
sends them to the DAC. The buffer provides 
a store of samples in case the PC samples 
are delayed. For CW transmit, the PC is not 
directly involved. Instead, the FPGA reads 
its key input pin. When the key goes down, a 
counter counts up to a maximum value, and 
when the key goes up, the counter counts 
down to zero. The counter is the input to the 
CORDIC mixer that tunes the DC counter to 
the output frequency. The result is a shaped 
key envelope with no delays from the PC. 

The most complicated block of FPGA 
code is used to manage the Ethernet control-
ler. First we initialize a register in the FPGA 
to zero. Then on power up, we start counting 
this register until we reach a timeout value. 
Until we reach timeout, we assert a reset pin 
connected to the Ethernet controller. Actually 
this reset pin is connected to all chips that 
can be reset, and is monitored by software 
routines that need initialization. In this way, 
we insure that power is stable before we start 
operating.

Next, we program some registers in the 
Ethernet controller by writing fixed byte 
values on the bus, and then we change the 
state of the FPGA state machine to “idle,” 
In the “idle” state, the FPGA first checks 

whether there is ADC data ready to be sent 
to the PC. If there is, it transmits an Ethernet 
packet with 42 bytes of header, a sequence 
byte, a status byte that includes the key up/
down state, and 1,440 bytes of data con-
sisting of 240 samples. If there is no ADC 
data, we check to see if an Ethernet packet 
was received. If no packet was received, we 
check the Ethernet controller for error condi-
tions, and turn on the on-board LED’s for 
any errors found. Then we enter a short wait 
and repeat.

If we receive an Ethernet packet, we read 
the first 80 bytes into a buffer, and examine 
the buffer to see what to do next. If the packet 
is an ARP request for our IP address, we 
send an ARP response. The ARP protocol is 
used to associate Ethernet addresses with IP 
addresses, and it makes the transceiver play 
nicely on your network. If the packet is a 
ping request to our IP address, we reply with 
a ping response. Ping isn’t completely neces-
sary, but it is useful and should be included 
in any Ethernet appliance. If the packet is a 
UDP packet addressed to us we continue to 
process it. Otherwise it is silently discarded, 
and we read and discard any remaining bytes 
in the Ethernet controller to clear it for the 
next packet.

If the UDP packet is addressed to our 
ADC sample port and has data 0x7272, we 
record the return address and use it to send 
our ADC samples. That way we do not have 
to program the IP address of the PC into the 
FPGA. If the data is 0x7373, we stop sending 
ADC data. If the UDP packet is addressed 
to our control port, we read the transmit fre-
quency, receive frequency, the transmit level 
(for the 8-bit DAC), the transmit mode (CW 
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Figure 3 – A block diagram of my station control.
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or SSB) and the requested stage two decima-
tion for the ADC. We then echo the control 
packet back to the sender as an acknowledge-
ment. If the UDP packet is addressed to our 
transmit audio port, we skip the two byte 
sequence number, write the audio from our 
buffer to memory, and then copy the remain-
der of the audio from the Ethernet controller 
to memory. The data is two 16-bit numbers 
(I and Q) at 48 kHz, or 1.536 megabits per 
second (plus overhead), a modest rate even 
on 10 megabit Ethernet.

Station Control
To make a complete station the exciter has 

to be combined with a power amplifier chain 
and filters. A block diagram of my station 
is shown in Figure 3. The antenna tuner is 
an AT200PC by LDG controlled by the PC 
through a USB to serial adapter. There are 
two filter boxes consisting of conventional 
LC filters switched by relays. The low-pass 
filters are the usual high power (150 W) 
transmit filters. The high-pass filters are low 
power LC filters. The combination results 
in a band pass response on both receive and 
transmit.

On receive, the signal goes through the 
low-pass filter, the high-pass filter, and then 
possibly through a switched preamp or atten-
uators. On transmit, the RF output from the 
exciter goes through the high-pass filter, then 
to a series of power amplifiers, then through 
a TVI filter, and finally through the low-pass 
filter to the antenna. My current antenna is a 
fan dipole for 60, 40 and 20 meters.

The relays require sequenced switching, 
so the key is connected to a microcontroller 
that generates keying signals for the relays 
and exciter. When the key goes down, the 
relays are switched first, followed by the 
exciter, and the reverse on key up. Note that 

there is no key line to the PC even though 
the PC needs to know the key state so it can 
mute the audio on transmit and substitute a 
sidetone on CW. The key status is sent to the 
PC using Ethernet. It is encoded in the sec-
ond byte of data in an ADC sample block. At 
one time I used a pin on the parallel port, but 
newer PC’s often don’t come with a parallel 
or serial port.

The station control shown is quite generic, 
and has been used with several past versions 
of my station. It worked just as well with my 
SDR-IQ receiver and 2008 exciter. I am con-
tinuing to work on the power amplifier chain, 
as I am having trouble keeping the gain flat 
with frequency and the IMD low.

 
Quisk Software

My Quisk software running on a PC 
controls my whole station. My PC is an old 
3 GHz Pentium 4 with one core. The PC 
controls the AT200PC antenna tuner through 
a USB to serial adapter; it controls the filter 
boxes through Ethernet and an I2C gateway; 
and it directly controls the transceiver by 
Ethernet. A screenshot of Quisk is shown in 
Figure 4. It shows the whole 40 meter band 
sampled at 480,000 samples per second. 
Quisk software is available on my Web site.11

Quisk was originally designed for CW 
QSK operation using the sound card as 
the receiver, and a DDS chip for transmit. 
Gradually I added the capability to control 
more hardware: an SDR-IQ receiver by 
RfSpace, my 2008 exciter, an AOR receiver 
with an IF output (as a panadapter), and 
now my transceiver. Quisk uses an external 
hardware file written in the Python program-
ming language to control its hardware. To 
use different hardware, you just change this 
file. You can use one of the hardware files 
that comes with Quisk, or write your own. 

Figure 4 – A screen shot of Quisk running on my PC.

There is also a way to add additional controls 
to Quisk by adding a custom Python “wid-
gets” file. Python is a powerful language that 
is very easy to learn. I use it for Quisk and 
for nearly everything else. Its complex data 
type is handy for impedance calculations, 
for example.

The top level of Quisk is written in 
Python, and controls the graphical user inter-
face (GUI), the graph and waterfall screens, 
and any custom hardware. The rest of Quisk 
is written in the C language, and this code 
is responsible for the sound cards, the USB 
interface, the Ethernet IP ports, the FFT (fast 
Fourier transform) and the digital signal pro-
cessing. Linking Python with C in this way is 
very common. The main program quisk.py is 
2300 lines, and the C code is 4500 lines. This 
is a very small program.

Quisk was never intended to be a “prod-
uct” in the sense that it had every feature 
imaginable and could run any hardware right 
out of the box. I always saw it as a starting 
point for other people’s homebrew proj-
ects; something that would be simple and 
understandable, and easy to adapt to differ-
ent hardware and software designs. That is 
one reason that Quisk runs on Linux. Linux 
comes with Python and C compilers, and it 
provides a rich software development envi-
ronment for free. Being simple, small and 
easy to change is one of the design goals of 
Quisk. But even though Quisk is simple, and 
after using other available radio software, I 
find I prefer Quisk. Some of that is no doubt 
pride of authorship, but I want my radio to 
look like a radio, not a Windows program, 
even though it is an image on a computer 
screen. And I find that Quisk is easy to tune 
and has the features I need.

Although I use Quisk to control my trans-
ceiver, that is not a requirement. The trans-
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ceiver is simply sending and receiving I/Q 
samples just like any other software defined 
radio. Any software can provide the data the 
transceiver requires. All that is needed is an 
Ethernet IP/UDP interface, and that is simple 
to supply.

Quisk Internals
Quisk runs in two threads, a GUI thread 

that runs the user interface, the screens and 
the FFT, and a second thread that is respon-
sible for reading and writing the sound and 
performing digital signal processing. When 
used with my transceiver, Quisk operates as 
follows. On receive, the sound thread reads a 
UDP port at timed intervals and collects any 
ADC samples available. These samples are 
first copied into an array for the FFT. When 
enough samples are available, the GUI thread 
will perform the FFT, average the results, 
and eventually update the screen. The sound 
thread then tunes the signal to baseband 
in a digital mixer, reduces the sample rate, 
filters the signal and divides it into an I/Q 
pair and demodulates it. For FM, there are 
additional filters at this point. There may be 
more decimation or interpolation depending 
on the sample rate and source. Finally, AGC 
is applied and the sound is played on the 
sound card.

For SSB transmit, the sound thread reads 
the microphone and boosts the high frequen-
cies in a digital filter. It then filters the audio 
and divides it into an I/Q pair. This signal 
is mixed to a higher frequency, clipped, re-
filtered, and mixed back down to baseband. 
These audio samples are sent to the UDP port 
and then to the transceiver.

There are a few other interesting features. 
The S-meter in Quisk is calculated by squar-
ing and averaging the correct number of FFT 
bins to equal the indicated filter width. This 
means that Quisk has a true RMS voltmeter 
with a known noise width that can be used to 
make noise measurements. Quisk can gen-
erate a two-tone test pattern to make IMD 
measurements. Quisk generates these tones 
in the PC software and sends them as an 
SSB signal. And Quisk has a spot switch that 
sends a CW carrier in SSB mode. That is not 
too exciting, except that since everything is 
digital, the level is guaranteed to be at PEP.

Problems
I am very happy with this transceiver 

hardware design, but there are still some 
unresolved problems and directions for 
future work. I measured the noise figure at 
23 dB. Although this is usable, I was expect-
ing a noise figure closer to the preamp noise 
at 200 Ω of 8 dB.  I found this very confus-
ing, but thanks to an email12 from Jeff Millar, 
WA1HCO, I now understand the high noise 
figure.  He calculated the noise figure of the 
ADC alone to be 30 dB.  The preamp gain is 
not sufficient to dominate the noise figure, 
and using the usual formula F = F1 + (F2 - 1) 
/ G1 gives the net noise figure I observe.  I 
do not want more preamp gain, as that would 
degrade the dynamic range.  I have an addi-
tional preamp external to the transceiver that 
I can switch in for 20 meters and up.   The 
purpose of the preamp is to make it easier to 
drive the receive input.

I am also worried about the clock integ-
rity. I connected the clock oscillator to three 
IC’s, but there is no spec for how many IC’s 
the clock will drive. I could connect the 
clock to the FPGA and run the clock straight 
through, but that might degrade the jitter. 
I could use a clock distribution IC, but the 
ones I saw had worse specs than my oscilla-
tor. I don’t have any evidence that the clock is 
questionable, but I don’t have any equipment 
to measure the clock noise either.

And then there is the power ampli-
fier chain. The IMD spec out of the DAC 
is exemplary, but it quickly degrades with 
amplification. On 10 meters, it winds up 
about 23 dB below one tone, and I am work-
ing on improving this. Even good quality 
commercial ham equipment seems to have 
IMD specs in the low 30 dB range below 
PEP. If I can get a cleaner power amplifier 
chain, then maybe I can bend the response 
curve in software to improve the IMD.

Conclusion
It has been great fun working with these 

new digital IC’s and getting a lot of hands-on 
experience with digital signal processing. I 
am not convinced that an all-digital radio is 
better than the best analog radio, but I think 
it is easier to homebrew one, especially since 
all the software is readily available for free. 
When I get on the air with it and say that 
my rig is homebrew, my ham friends take an 
interest, and that is very gratifying. I would 
also like to thank the hams that have emailed 

me and expressed an interest in my work.
I also learned that even in this digital 

age, some things in radio never change. As 
pointed out by Wes Hayward et al, building 
a receiver is a great way to learn humility. 
If there were a magic bullet formula for a 
receiver, they would all be built the same 
way, but instead, receiver design remains a 
challenge. And filters remain at the heart of 
radio whether digital or analog. And then 
there are antennas. It was amazing to me how 
much better my first digital receiver worked 
when attached to a good antenna!  When I 
tune across the bands, I hear hams with digi-
tal rigs, analog rigs, and some with classic 
Collins or Drake gear, but one thing I know 
for sure; they definitely have an antenna.
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