Signals, Samples, and Stuff:
A DSP Tutorial (Part 3)

Our tour continues with a foray
into advanced DSP techniques.

aving learned about basic
IF-DSP methods and their
applicationin an actual trans-

ceiver, it’s time to plunge into the truly
magical stuff! In this third article in
the series, we’ll be looking at certain
esoteric but extremely effective DSP
techniques. By now, many of these
concepts have found their way into
production equipment, but they still
are not generally well understood.

In this article, I will begin illustrat-
ing the underlying principles of cur-
rent DSP noise reduction technology.
Unfortunately, @EX space constraints

TNotes appear on page 27.
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require that Part 3 be broken across
two issues. Therefore, Part 4 will com-
plete the description of noise-reduc-
tion technology and the entire DSP
seriesinthe September/October issue.

DSP Noise Reduction Methods

Two noise reduction (NR) methods
are prevalent in radio equipment to-
day: the adaptive filtering method,
and the Fourier transform method.
We'll look at the theory behind each of
these approaches, and discuss their
implementation and performance.
Then, a way of combining the two
methods is considered. Along the way,
I’ll introduce a very fast way of calcu-
lating Fourier transforms—faster
than the well-known “fast Fourier
transform” algorithms.

Adaptive Filtering

In Part 1, we touched on the concept
of an adaptive interference canceler
and identified a design for an adaptive
notch filter using the least-mean-
squares (LMS) algorithm. These
principles are explored in more detail
here, as they apply to noise reduction
systems. We'll find that it’s possible to
build an adaptive filter that accentu-
ates the repetitive components of
an input signal, and rejects the non-
repetitive parts (noise). Further, we’ll
discover that the effectiveness of this
technique depends on the characteris-
tics of the input signals.

The nature of information-bearing
signals is that they are in some way
coherent; ie, they have some feature
that distinguishes them from noise.
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For example, voice signals have at-
tributes relating to the pitch, syllabic
content, and impulse response of a
person’s voice. CW signals are perhaps
the simplest example because they
constitute only the presence or ab-
sence of a single frequency.

Much research has been done about
detection of a sinusoidal signal buried
in noige.12 Adaptive filtering methods
are based on the exploitation of the
statistical properties of the input sig-
nal, specifically the autocorrelation.
Simply put, autocorrelation refers to
how recent samples of a waveform re-
semble past samples. We’ll build an
adaptive predictor, which actually
makes a reasonable guess at what the
next sample will be based on past
input samples. This leads directly to
an adaptive noise-reduction system.
Later, we’ll discover how this technol-
ogy is applied to compression of voice
and other signals for digital transmis-
sion over the telephone network.

The Adaptive Interference Canceler!

Imagine that we have some input sig-
nal x(k), and we want to filter it to en-
hance its sinusoidal content. The quan-
tity x(k) is just the discrete sample of
continuous input signal x taken at time
k. In the case of a CW signal, all that’s
required is a band-pass filter (BPF) cen-
tered at the desired frequency. We
know the output will take the form of a
sine wave, and that only its amplitude
will change.

So we set up an FIR filter structure,
and set the initial filter coefficients
h(k) to zero. Then we set up an error-
measurement system to compare a
sine wave d(k) with the output of the
filter, y(k). See Fig 1. The reference
input d(k) is the same frequency we
expect the CW input signal to be. The
difference output e(k) is known as the
error signal. Then imagine we have
some algorithm to adjust the filter
coefficients so that the error e(k) is

reduced at each sample time. Think of
the algorithm as some person who is
“eye-balling” the error signal on an
oscilloscope and has their hands on
the filter controls. If they can mini-
mize the error, then the filter will have
converged to a BPF centered at the
frequency of d(k).

We can already deduce that the
speed and accuracy of convergence is
going to depend on how well the per-
son analyzes the error data. If it’s dif-
ficult to tell that a sine wave is
present, then adjusting the filter will
be difficult, as well. Further, if the
sampling rate is high enough, the per-
son can’t keep up; they can check the
error only so often, or they can take
long-term averages of the error.

Using the typical processes of the
human mind, the person will soon dis-
cover that if they turn the controls the
wrong way, the filter will diverge from
the desired response; ie, the error in-
creases. This information is used to
reverse the direction of adjustment; the
person will then turn the controls the
other way. They will soon discover they
are on a performance surface that has
an “uphill” and a “downhill,” and they
know they want to go only downhill.

So they thrash about with the con-
trols, sometimes making mistakes and
heading the wrong way, but ultimately
making headway overall down the hill.
At some point, the error gets very small,
and they know they’re near the “bottom
of the bowl.” Once at the bottom, it’s
uphill no matter which way they go! So,
they continue flailing about, but always
staying near the bottom. They have
successfully achieved the goal: Minimi-
zation of the total error e(k). This story
is analogous to aligning an analog BPF
with an adjustment tool.

After doing this several times, the
person finds that certain rules help
them speed up the process. First, there
is a relationship between the total er-
ror and the amount they need to tweak

the controls. If the total error is large,
then a large amount of tweaking must
be done; if small, then it’s better to
make small adjustments to stay near
the bottom. Second, there is a correla-
tion between the error signal e(k), the
input samples x(k) and the filter coef-
ficient set A(k) they need to adjust.
Derivation of algorithms that pro-
vide for the quickest descent down the
hill is a very long and tedious exercise
in linear algebra. Let’s just say the
person goes to school, becomes an ex-
pert in matrix mathematics and dis-
covers that one of the fastest ways
down the hill is to make adjustments
at sample time £ according to:
By = hy +20e,x;, (Eq 1)
This is the LMS algorithm. It was
developed by Widrow and Hoff3 in the
late 1950s.

Properties of the Adaptive
Interference Canceler

Now we have our adaptive interfer-
ence canceler. See Fig 2. Note that
both the desired output y(k) and the
undesired e(k) are available. This is
nice in case we want toexchange roles,
to accept only the incoherent input
signals and reject coherent ones. Such
is the case for an adaptive notch filter,
treated further below. This doesn’t
change the algorithm, however. Quan-
tities of interest in this system are the
adjustment error near the bottom of
the performance surface, and the
speed of adaptation.

One of the first things we discover
about the LMS algorithm is that the
speed of adaptation and the total
misadjustment are both directly pro-
portional to pu. We select its value,
which ranges from 0 to 1, to set the
desired properties. Note that there is
a trade-off between speed and misad-
justment. Large values of u result in
fast convergence, but large adjust-
ment errors.

FIR k) = e (k
Filter

Input )_x_(hL.

Fig 1—An adaptive modeling system.
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Fig 2—An adaptive interference canceler.



Also note that the number of filter
coefficients h(%k) has a bearing on both
of these performance parameters. It
turns out that the total amount of
misadjustment is directly propor-
tional to the number of filter coeffi-
cients, and this places a limitation on
the complexity of the filter. In addi-
tion, as the filter grows in length, the
total delay through the filter grows
proportionately. The delay through an
FIR filter of length L is equal to:

LT,
2
where T is the sample time, and this
may become unacceptable under cer-

tain conditions.

Attempts may be made to adjust the
factor 4 on an adaptive basis by using
avalue which changes in proportion to
the total error e(k). A large value is
selected initially to obtain rapid con-
vergence, then it’s decreased to mini-
mize the total misadjustment as we
approach the steady-state solution.
This works fine as long as the charac-
teristics of the input signal don’t
change rapidly.

Trig = (Eq 2)

The Adaptive Interference Canceler
Without an External Reference—
The Adaptive Predictor

In the above example of a CW sig-
nal, we knew what to expect at the
output: A sine wave of known fre-
quency. What happens when we don’t
know much about the nature of the
desired signal, except that it’s coher-
ent in the time domain? A number of
circumstances arise wherein the only
fact known about the desired signal is
that it is distinguishable from noise in
some way; lie, that it’s periodic. It
might seem at first that adaptive pro-
cessing can’t be applied. Butifadelay,
z-" is inserted in the primary input
x(k) to create the reference input d(k),
periodic signals may be detected and,
therefore, enhanced. See Fig 3. This
delay is akin to an autocorrelation off-
set, and it represents the time differ-
ential used to compare past input
samples with the present ones. The
amount of delay must be chosen so
that the desired components in the
input signal autocorrelate, and the
undesired components do not.

This system is an adaptive predic-
tor. The predictable components are
enhanced, while the unpredictable
parts are removed. Fig 4 shows the
result of an actual experiment using a
sine wave buried in noise as the input.
The input BW is 3 kHz, and the input
SNR = 0 dB. For any given value of y,

x (k) +
Input g + >——ee (k)
% 2
ey X10) FIR y(k)
Filter
Delay X
Coefficient
Adjustment
LMS
Algorithm

Fig 3—An adaptive predictor.
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the filter converged on the optimal
solution fastest when the delay was
set roughly equal to the filter delay as
defined in Eq 2. Note that the filter’s
impulse response is also a sinusoid.
We find that the filter’s BW1! is:

2
BW = 24
T,

A

(Eq 3)

where A is a long-term average of the
amplitude of the input x(k2). So the
speed of adaptation and the NR effec-
tiveness are proportional to ¢ and to
the amplitude of the input signal. In
the example, u=0.005,A=1,and T, =
(15 x 10%)-1. The SNR improvement is
therefore:

ASNR =10log (3 kHZ)
BW
(3x10)7,
=13dB
Alternatively, the unpredictable

components e(k) may be taken as the
output. This forms an adaptive notch
filter. Say we have a desired voice sig-
nal corrupted by the presence of a
single interfering tone or carrier. This
is a very common situation on today’s
HF ham bands! We can set the
autocorrelation delay and variable u
so that the steady tone is predictable,
and the rapidly changing voice char-
acteristics are not. The filter will con-
verge to the solution that removes the
tone and leaves the voice signal virtu-
ally unscathed.

The BW of the notch is the same as in
Eq 3, but its depth is determined only
by numerical-accuracy effects in the
DSP system. When adaptive filters
with many taps are used, multiple
tones may be notched. See Fig 5. In this
experiment, several nonharmonically
related tones, plus noise, are used as
the input. The filter’s response con-
verges to notch them all, leaving only
noise at the output. In this case, the
undesired components are large com-
pared to the desired components. When
the undesired signal level is low, there
might not be enough thrashing about on
the performance surface for us to find
our way down the hill. Adding artificial
noise to satisfy this condition is tempt-
ing, but it turns out that we can alter
the algorithm to improve the situation
without actually adding noise. Such
additional terms in the algorithm are
referred to as leakage terms.

16 QEX

“Leaky” LMS Algorithms

The unique feature of leaky LMS al-
gorithms is a continual “nudging” of
the filter coefficients toward zero. The
effect of the leakage term is striking,
especially when applied to NR of voice
signals. The SNR improvement in-
creases because the filter coefficients
tend toward a lower throughput gain
in the absence of desired input compo-
nents. More significantly, the leakage
helps the filter adapt under low SNR
conditions—the very conditions when
NR is needed most.

One way to implement leakage is to
add a small constant of the appropri-
ate sign to each coefficient at every
sample time. This constant is positive
for negative coefficients, and negative
for positive coefficients:

(Eq 5)

The value of A can be altered to vary
the amount of leakage. Large values
prevent the filter from converging on
any input components, and things get
very quiet indeed! Small values are
useful in extending the noise floor of
the system. In the absence of coherent
input signals, the coefficients linearly

hk+1 = h/( +2H€k.xk “).[Slgn(hk )]

move toward zero; during convergent
conditions, the total misadjustmentis
increased to at least A, but this isn’t
usually serious enough to affect re-
ceived signal quality.

An alternate way to implement
leakage is to scale the coefficients at
each sample time by some factor, v,
thus also nudging them toward zero:
Pyy = Yhy +2le Xy (Eq 6)

For values of y just less than one,
leakage is small; values near zero rep-
resent large leakage and again pre-
vent the filter from converging. This
realization of the leaky LMS exhibits
a logarithmic decay of coefficients
toward zero, which may be advanta-
geous under certain circumstances. It
can be shown! that the leaky LMS is
equivalent to adding normalized noise
power to the input x(k) equal to:

1-
gl=_—Y

n (Eq 7)

Note that the leaky LMS algorithm
must adapt to “survive.” Were the fac-
tor u suddenly set to zero, the coeffi-
cients would die away toward zero and
never recover. Therefore, it’s unwise
to use these algorithms with adaptive
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values of u. Although values for y and
pgreater than one have been tried, the
inventors refer to these procedures
as “the dangerous LMS algorithm.”
Enough said.

Next, I'll describe an even more pow-
erful NR tool, the Fourier transform.
Although it’s generally more process-
ing-intensive than methods described
thus far, the results can be impressive.
First, however, let’s look at the great
man whose work is so inexorably bound
to modern electronic communications.

Joseph Fourier—A Legacy of Genius

Joseph Fourier (1768 to 1830) was
born the son of a tailor.* Educated by
monksin amilitary school, Fourier ap-
parently thought only the army or the
church could provide him a career.
Despite a recommendation from the
famous mathematician Legendre, the
army rejected his application to the
artillery; he opted instead for a reli-
gious life. Mathematics had been his
primary scientific study since an early
age, and at the onset of the French
Revolution, he was appointed by the
monks to the principal chair of math-
ematics at Auxerre. There, Fourier
met Napoleon, who often attended lec-
tures at the major universities.

When Napoleon organized an expe-
dition to Egypt in 1798, Fourier was
asked to join. After three years there
in the capacity of an engineer, he col-
laborated with Napoleon to produce
the Description of Egypt, which estab-
lished his literary prowess and even-
tually won him election to the French
Academy.

On his return to France, he was
granted a comfortable governmental
position, which gave him free time to
pursue his mathematical interests. In
1807, he submitted to the Academy his
first paper describing the motion of
heat in solid bodies. In 1812, he was
awarded the prize for scientific accom-
plishment for his complete explanation
of the effect—the judges were Laplace,
Legendre and Lagrange! His place in
history was thereby confirmed.

Fourier was elected a member of the
Academy of Sciences in 1817, and to
the French Academy in 1822. He died
while still in government service in
1830. He could scarcely have imagined
what impact his work has had in the
field of electronics, especially DSP.

The Fourier Transform
and Its Inverse

The relationship Fourier discovered
between the application of heat to a
solid body and its propagation has di-
rect analogy to the behavior of electri-

cal signals as they pass through filters
or other networks. The laws he found
represent the connection between the
time- and frequency-domain descrip-
tions of signals. They form the basis
for DSP spectral analysis, and there-
fore they are useful in digging signals
out of noise, as we’ll see below.

The Fourier Transform® of some con-
tinuous signal x, is expressed as:
Xy = je ! x,dt (Eq 8)

It’s obtained by making the follow-
ing assumptions: x, is a continuous,
periodic function of time; and any con-
tinuous, periodic function of time can
be expressed as the superposition (in-
tegral) of sines and cosines. Recall the
Euler identity:

e = cosr + jsin or (Eq9)

and observe that when the real and
imaginary parts are separated, Eq 8
produces coefficients e, and b

ay = [x, cos(wr) dr

-y

(Eq 10)

by = —jojc, sin(ox) dr (Eq 11)
X, is just the sum of these terms as a
complex pair:
Xo =g+ by (Eq 12)

The coefficients yield the amplitude
and phase of the signal x; at the fre-
quency o:

1
Aw = (ag+by)? (Eq 13)

1| bg
=tan ——
% [”w }

Working in reverse, we can recon-
struct x, by integrating X for all val-
ues of o:

(Eq 14)

] rtX jot g
x, = [X,e! ™ do

21 n (Eq 15)

This is known as the Inverse Fourier
Transform of X . The limits of integra-
tion in this case are finite because &/®
and X, are themselves continuous,
periodic functions of ©, repeating with
period 27 This follows from Eq 8, since:
e/ (Eq 16)

We had to use infinite limitsin Eq8,
because we made no assumptions
about the length of period of x,. Ie, we
didn’t know how far in time to look
until x, began repeating itself. If we
had some knowledge about the period-
icity of x,, then we could restrict the
integration limits without major dele-
terious effects.

Using infinite integration limits,

(w+2n) oot

components inx, not at frequency ® do
not affect the result. In the DSP
world, however, we deal with discrete
samples of the amplitude of x,, which
we'll refer to as x(n). The discrete Fou-
rier Trangform (DFT) gives us an
expression equivalent to Eq 8 for
sampled signals. We’ll see that in this
form, issues of frequency resolution
arise because infinite evaluation in-
tervals aren’t practical.

The Discrete Fourier Transform
(DFT)

The discrete-sample equivalent of
Eq 8 is expressed as:

X{w)= Ee‘jm"x(n)

n=—oc0

(Eq 17)

where n is the sample number. As al-
luded to above, we can’t compute this
sum over an infinite number of
samples. In discrete spectral analysis,
many sums must be obtained; only a
short time is available for these com-
putations before the next iteration
must be performed.

Solet’ssaythatx(n) hasaperiodless
than some number of samples N. We
limit our summation to that number
of samples, and as a consequence, the
results are available only in integer
multiples of the fundamental fre-
quency 2n / N:

~2mjkn
N x{(n)

N1
X(k)y= Y e
n={)

This is the DFT for a frequency pro-
portional to k. It turns out there are
just N frequencies available that are
integer multiples of 2n / N. This is
because e-2Wkn/N ig periodic with pe-
riod N. It’s a fact of DSP life that
samples taken at discrete times
transform to samples at discrete fre-
quencies using the DFT.

DFTs are normally computed for N
evenly spaced values of k. To relate the
normalized analysis frequency £ / N
to the sampling frequency 1/ T, we
can write:

k N
1 = ——, for k < —
fe=3r 2

(Eq 18)

(Eq 19)

Ry

This is the actual frequency, in
hertz, of the DFT represented by X(k).

Theideais thatif we can analyze our
input signal at many frequencies, and
exclude those results or bins not meet-
ing certain criteria, we can eliminate
undesired signals. Filters can be
implemented by rejecting signals out-
side the frequencies of interest. And
noise reduction can be accomplished
by eliminating bins for which a preset
amplitude threshold is not met.
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The DFT In Noise-Reduction Systems

The efficacy of the DFT is that it
evaluates the amplitude and phase of
some particular frequency component
to the exclusion of others. As far as we
can reduce the resolution bandwidth
(BW) of our frequency-specific mea-
surements using the DFT, we can
eliminate noise. Ie, the finer the fre-
quency resolution, the less noise we
are includingin each bin, so any coher-
entsignal in the measurement BW has
an improved signal-to-noise ratio
(SNR). Finer resolution is obtained by
increasing the number of bins, N.

Shown in Fig 6 is the result of a DFT
analysis ofalow-level 1 kHz sine wave
buried in noise. In the 3 kHz BW of in-
terest, the noise power is just equal to
the signal power at the input. The SNR
is therefore 0 dB. The sampling fre-
quencyis 15kHz,and N = 1500 for this
DFT. Because the resolution BW of

our DFT is:

. 1
fres BW =N 10 Hz (Eq 20)
the SNR improves at the bin centered
on 1 kHz by the factor:

3kHz
SNRyo - = IOIOg[ e

j: 24.8dB

(Eq 21)
The sine wave stands out clearly
above the noise. We can modify the re-
sults of our spectral analysis by set-
ting a threshold, below which we set
the DFT results to zero. See Fig 7. We
then convert this modified frequency-
domain picture back to time-domain
samples using the inverse DFT
(DFT-1):
21 jkn

NX(k)

N-1
x’(n) -1 Y e (Eq 22)
N =0

Since the bins containing only noise
have been zeroed in the modified
transform samples X'(k), the output
signal x'(n) now has an improved SNR
0f24.8 dB! The remaining noise is cen-
teredin a 10 Hz BW around the 1 kHz
tone. See Fig 8. Note that we have to
compute 1500 DFT bins at each
sample time to get this result. Any
bins that are zeroed obviously make
the conversion using the DFT-1 faster,
since they need not be computed.

Setting the Threshold

Setting the cutoff threshold is criti-
cal to this noise-reduction method,
because we may inadvertently exclude
low-energy components, which are
actually part of the desired signal. The
simplest solution has the operator

18 QEX

set it manually. One just “mows the
grass” to whatever depth produces a
pleasing result.

An automatic system seems possible,
but we would need to make some as-
sumptions about the nature of the de-
sired signal or signals. The require-
ments for a voice signal, for example,
might be quite different from those for
a RTTY or CW signal. Selective fading
and multipath effects ultimately limit
the usefulness of any automatic system.

Since we control which bins get ex-

cluded, based not only on their ampli-
tudes, but also their frequencies, the
DFT gives us a way to include custom
band-pass filter banks, similar to a
graphic equalizer.

Computation of the DFT and
Limitations on Accuracy

Components in x(n) at frequencies
other than 2 / N skew the result and
significantly limit resolution BW. The
limited summation range broadens the
spectral line width, even for a single
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input frequency as shown in Fig 9. The side lobes of the
spectral broadening are evident in this diagram. Many ad-
vanced methods have beenintroduced to deal with this situ-
ation. They are based on either reduction of the computa-
tion time to obtain more bins, or modification of the data, or
both.

Of help in reducing the broadening effect is the technique
of windowing the input data. The data block is multiplied by
awindow function, then used as input to the DFT algorithm.
Examples of window functions and their DFTs are shown in
Fig 10. The rectangular window is equivalent to not using a
window at all, since each input sample is multiplied by
unity. The other window functions achieve various amounts
of side-lobe reduction.

Also impacting the accuracy of our results are the famil-
iar truncation and rounding effects previously discussed.®
Their influence on the DFT is treated further below.

Other advanced spectral-estimation techniques have
been developed over the years,” 8 some of which produce
excellent results. Most use the DFT in some form. Because
computation time is critical in embedded systems and
Fourier analysis is so important to so many fields, much
time and effort has been expended to find efficient DFT-
computing algorithms.

In the years before computers, reduction of computational
burden was extremely desirable, because computation was
done by hand! Many excellent mathematicians, including
Runge,? applied their wits to the problem of calculating
DFTs more rapidly than the direct form of Eq 18. They
recognized that the direct form required N complex multi-

plications and additions per bin, and N bins were to be’

calculated, for a total computational burden proportional
to N2. The first breakthrough was achieved when they re-
alized that the complex exponential e=2%4"/N ig periodic
with period N, so a reduction in computations was possible
through the symmetry property:

“2mjk(N—n)
e N

2rjkn
—e N (Eq 23)

This led to the construction of algorithms that effectively
broke any N DFT computations of length, N, down into N
computations of length log, (N). Thus, the computational
burden was reduced to N log, (N). Because even this much
work wasn’t practical by hand, the usefulness of the dis-
covery was largely overlooked until Cooley and Tukey!0
picked up the gauntlet in the 1960s.

The Fast Fourier Transform (FFT)

Let’s look at how FFT algorithms are derived from the
repetitive nature of the complex exponential (Eq 23) above,
and how they’re implemented using in-place calculations.
Since we're going to be dragging around a lot of complex
exponentials, we’ll adopt the simplified notation of
Oppenheim and Schafer® where:

—2mjkn
e N

— WNkn (Eq 24)

To exploit the symmetry referred to, we have to break
the DFT computation of length, N, down into successively
smaller DFT computations. This is done by decomposing
either the input or the output sequence. Algorithms
wherein the input sequence x(n) is decomposed into suc-
cessively smaller subsequences are called decimation-in-
time algorithms.

Let’s begin by assuming that N is an integral power of
two. That is, for a whole number p:

N=2P (Eq 25)

Next, we break the input sequence into two subsequences,
one consisting of the even-numbered samples, and the other
of the odd-numbered samples. For some index r, n = 2r for n
even, and n = 2r + 1 for n odd. Now, with Eq 18 in mind, we
can write:

E_l ﬁ,l
X(K)= "3 W@+ s Wi e 2re)

r=0 r=0
S . %71 ) (Eq 26)
r r
=3 (WNZ) x(2r)+ WS (WNZ) x(2r+1)
r=0 r=0

To further simplify, we can use:

Wyi=e N
2w
N
=e 2 (Eq 27)
=Wy
and so now:
gq %71
X(k)="3 Wyt x (2n)+ W T wik x(2r+1) (Eq 28)
r=0 ? r=0 ’2'
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x (4) ———] %2
x (6) L——————» X (3)
® = Multiply
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x(1) 2—-—> X (4)
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O e —— X (6)
x(7)()—> X{7)
Fig 11—An eight-sample DFT as two four-sample DFTs.
x{0) (1) (1) o X (0)
()
A S i
x(4) O 3 O - & D x(m)
wy ' \/
Am "
x(2) O (+) A& DIx@
WN
T N
x(6) O ® © R—=C D x(3)
W,: W @
W3
N ® = Multiply
® = Adg
x(1) (X O—{x#
N
x(5) X X(5)
/ Wy
x(3) (X X(8)
N
x(7) »(x X(7)
w7

Fig 12—An eight-sample FFT.

July/Aug 1998 21



It’s evident that Eq 28 represents
two N / 2-sample DFT calculations. It
has in fact eased the computational
load, since it requires:

N2 N2
N+2(2j N+ 3 (Eq 29)
complex multiplications and additions.
Note that W, is a function only of 2, and
is therefore a set of constants. We have
reduced calculations by the factor:

2
v+
2 L1 (Eq 30)

N> N 2
which for large N is nearly a two-fold
reduction.

This is where flow charts become
useful, so Eq 28 is used to produce Fig
11, an example of an eight-sample DFT
calculation as broken into two four-
sample calculations.

Carrying this idea further, since N
is an integral power of two, we can
break each of these N / 2-sample DFT
calculations down into separate N/ 4-
sample calculations. Then we break
each of those into separate N / 8-
sample calculations, and so on, until

X (@) {Xt41 (o)

) = Multiply
® = A

X (b) (%) ()xt+1 (b

r+ N/2
WN
Fig 13—Butterfly calculation for a decimation-in-time FFT.

X; (a) § -0 o % 41 (a)
& = Muitiply
® = Add

Xy (b) =()— & ()Xt +1(8)
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Fig 14—Modified butterfly.
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we're left with only two-sample DFT calculations. From
this discussion, it’s obvious that we can break things down
only log, N - 1 times until we get to the two-sample level.
When this has been done for our eight-sample DFT, the
resulting flow chart is a complete FFT, as shown in Fig 12.

In-Place Calculation

The figure shows that starting with eight input samples,
eight outputs are generated. Each stage requires N complex
multiplications and additions, and there are log, N stages;
hence, the total burdenis N'log, N. Further, each stage trans-
forms N complex numbers into another set of N complex num-
bers. This suggests we should use a complex array of dimen-
sion N to store the inputs and outputs of each stage as we go
along. Finally, an examination of the branching of terms in
the diagram reveals that pairs of intermediate results are
linked by pairs of calculations like the one shown in Fig 13.
Because of the appearance of this diagram, it is known as a
butterfly computation.

This computational arrangement requires two complex
multiplications and additions. For each butterfly, the in-
termediate results are in the form:

X, i{a)=X,(a)+ Wy X, (b)

el (Eq 31)
Xr+l(b) =X, (a)+ Wy = X, (b)

where t represents the stage number of the calculations,
and a and b are the branch numbers. Note that:

i N
2 w2 Eq 32
Wy 2=Wy W’ (Eq 32)
and:
N Y
WNZ —=e N
—e T (Eq 33)
=-1
So now Eq 31 can be written:
X, (a)= X, (a)+ Wy X, (b)
(Eq 34)

Xi1(b)= X, (a)— Wy X, (b)

The equivalent flow diagram is shown as Fig 14. Now
that’s slick, since we just reduced the total multiplications
by an additional factor of two! The total burden is now pro-
portional to (N / 2) log, N.

These calculations can be performed in place because of
the one-to-one correspondence between the inputs and
outputs of each butterfly. The nodes are connected hori-
zontally on the flow diagrams. The data from locations a
and b are required to compute the new data to be stored in
those same locations, hence only one array is required
during calculation.

An interesting result of our decomposition of the input
sequence x(n) is that in the FFT calculation of Fig 12, the
input samples are no longer in ascending order. In fact, they
are indexed in bit-reversed order. It turns out that thisis a
necessity for doing the computations in place. To see why
this is so, let’s review what we did in the derivation above.

First, we separated the input samples into evens and
odds. So naturally, all the even samples appear in the top
half, and the odds in the bottom half. The index n of an odd
sample has its least-significant bit (LSB) set; an odd
sample’s LSB is cleared.

Next, we separated each of these sets into their even and
odd parts, which can be done by examining the second LSB
in the index n. This process was repeated until we had N
subsequences of unity length. It resulted in the sorting of
the input data in a bit-reversed way. This isn’t very conve-
nient for us in setting up the computation, but at least the
output arrives in the correct order!

Alternative Forms

It’s possible to rearrange things such that the inputisin
normal order, and the output is in bit-reversed order. See
Fig 15. In-place computation is still possible. While it’s
even possible to arrange things such that the inputand the
output are in normal order, that makes in-place computa-
tion impossible.

We obtained a decimation-in-time algorithm by decom-
posing the input sequence x(n) above. It’s also possible to
decompose the output sequence in the same way, with the
same computational savings. Algorithms obtained in this
way are called decimation-in-frequency.

To begin this derivation, we again separate the input
sequence x(n) into two parts, but this time, they are the
first and second halves:

N
2 nk Nt nk
X(k)="X Wy“x(n)+ ¥ Wy"x(n)
n=0 n:%
g-l N g—l_ N (Eq 35)
=T Wytx(n)+| Wy? [T WN"kx[n+—)
n=0 n=_) 2
Using the relation:
kN
WNZ :(_I)k (Eq 36)
and combining the summations, we get:
Yo
2 k k n
X(ky=¥ Wy*| x(n)+(-1) x(n+—2—) (Eq 37)
n=0

Now let’s break the output sequence into even and odd
parts, again using index r < N/ 2 as above:

N
.
2
X(2r)= ¥ WNzr"I:x(n)+x(n+ﬁﬂ
n=0 2
%fl N (Eq 38)
XQ2r+1)=Wy' ¥ WNzr"{x(n)—x(nﬁ——ﬂ
n=0 2
Since:
2rn_ m
= WQ (Eq 39)
Eq 38 can be written:
Yo
2
X(2r)= X Wleix(n)+x(n+}—V—ﬂ
n=0 3 2
A (Eq 40)

XQr )= WS WNr"{x (n)=x (n +-’2Yﬂ

n=0 B}

and the result is again two N/ 2-sample DFT calculations.
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Proceeding in direct analogy to the
decimation-in-time algorithm above,
decomposition continues until we
have only two-sample DFT calcula-
tions left, and for the case N = 8, the
flow diagram appears as shown in Fig
16.

Note that this algorithm can be per-
formed as butterflies, and that calcu-
lation in place is possible just as be-
fore. The butterflies are a bit different
now, however, as depicted in Fig 17.
The corresponding equations are:

X, (@)= X,(a)+ X, (b)
X (h) = (Xt (“)_ X; (b))WI('

While it’s a bit difficult to see at first,
we can state the following: For every
decimation-in-time algorithm there
exists a decimation-in-frequency algo-
rithm that is equivalent to swapping
the input and the output, and reversing
all the arrows in the flow diagram. This
duality is useful as we consider comput-
ing the inverse FFT (FFT-1),

(Eq 41)

Returning to the Time Domain

NR systems are typical in that after
obtaining the FFT, we perform some
modification of the frequency-domain
data; we then transform the modified
data back to the time domain. Since
Eq 18 and 22 are so similar, the type of
algorithms described above can be
used to compute the FFT-1. One way is
to simply substitute /2W, " for W, kn
at each stage in Fig 12, and of course
use X(k) as the input to obtain x(n) as
the output. This results in the dia-
gram of Fig 18.

Alternatively, we can compute the
FFT-1by using either form of FFT flow
diagram, swapping the inputs and out-
puts and reversing direction of signal
flow, as mentioned before. It’s impor-
tant to note that this is a consequence
of the fact that we can rearrange the
nodes of the flow diagrams however we
want without altering the result. So,
they work just as well in reverse as
they do in the forward direction!

It’s convenient to have the output
order of the FFT the same as the input
order of the FFT-1, so we're wise to use
decimation-in-time for one conver-
sion, and decimation-in-frequency for
the other.

General Computational
Considerations

This business of bit-reversed index-
ing is what usually ties one’s brain in
knots during coding of these algo-
rithms, and it’s certainly one of the
first things to be tackled—so let’s have
at it! Several approaches are feasible: a
look-up table, the bit-polling method,
reverse bit-shifting and the reverse-
counter approach.

The look-up table is perhaps the
most straightforward method. The
table is calculated ahead of time, and
the index used as the address to the
table. See Fig 19. Most systems don’t
require extremely large values of N, so
the space taken by the table isn't

x(0)

(1)

x(2)

x(3)

x(4)

x(5)

x{6)

x(7)

& = Muitiply

® = Add

X (0)

X(4)

X (2)

X (6)

X (1)

X {(5)

X (3)

X(7)

Fig 16—An eight-sample decimation-in-frequency FFT.
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objectionable. For more space-sen-
sitive applications, the bit-polling
method may be attractive.

Since the bit-reversed indices were
generated through successive divi-
sions by two and determination of
odd or even, a tree structure can be de-
vised thatleads us to the correct trans-
lation, based on bit-polling. See
Fig 20. The algorithm examines the
LSB, then branches either upward or
downward in the tree based on the
state of the bit. Then the second LSB
is examined, a branch taken, and the
procedure is repeated until all bits
have been examined.

The bit-shifting method requires
the same computation time. Two reg-
isters are used, one for the input index
shifting right through the carry bit,
the other shifting left through the
carry. After all bits have been shifted,
the left-shifting register contains the
result. See Fig 21.

Finally, Gold and Rader!! have de-
scribed a flow diagram for a bit-rever-
sal counter that can be “decremented”

each time the index is to change. If the
data are actually to be moved during
sorting, the exchange is made between
data at input index n and bit-reversed
index m, but only once! In cther words,
only N / 2 exchanges need to be
performed.

During the actual calculations, the
indexing of data and coefficients re-
quires attention to many details. In
particular, several symmetries about
offsets of the index can be exploited. In

the case of a decimation-in-time FFT,
at the first stage, all the multipliers
are equal to Wa0 = 1, so no actual mul-
tiplications need take place; all the
butterfly inputs are adjacent elements
of the input array x(n). At the second
stage, the multipliers are all either
WO or integral powers of WyN/4, and
the butterfly inputs are two samples
apart. At the ¢th stage, the multipliers
are all integral powers of WpN/2¢, and
the butterfly inputs are separated by

Xy (@)

Xy (b)

{ Xt 41(@)

® = Multiply
@ =Add

Xt 41(0)

Zn

X (0) o
1/2
X(4) &
1/2 Wy’
x(2) X
1/2
X (6)
1/2 W _
X (1) S
1/2
X(5) ®
1/2 WS°
X (3) X Q (D
2 v
X(7) 040
1/2 we° 1

® & O
=) (D o O
172 Wi’ -1 /2w

® = Multiply @ = add

{ x(@)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Fig 18—FFT~! implemented by interchange of input, output and coefficients.
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2t-1 samples. Note that in most of the
algorithms we've described, the coeffi-
cients are indexed in normal order.

Each FFT algorithm has its own
unique indexing requirements. For
our NR system, we don’t care that the
FFT result is stored in bit-reversed
order, since we’re not performing any
frequency-specific operations. We'll
use a decimation-in-time FFT to have
the input sequence x(n) in normal or-
der, and a decimation-in-frequency
FFT-1 to produce an output sequence
also in normal order.

The coefficients of the complex ex-
ponential Wy can be obtained in vari-
ous ways. The most common way is to
generate them ahead of time and store
them in a table. Another way is to use
a recursion formula to generate them
as needed. Since in general, the coeffi-
cients are all integral powers of Wy,
we can use:

WNI\'h: WNk WNk(lzfl)

(Eq 42)

to get the Ath coefficient from the hA—
1th. However, errors will build up over
time with this method because of the
finite precision of our mathematics;
each multiplication generates a
rounding or truncation error that adds
to the total. It’s necessary to reset the
value at periodic intervals to prevent
divergence.

We'll see below that we always have
to accept some error in our results be-
cause of accumulated rounding or trun-
cation no matter how the DFT is calcu-
lated. We will analyze these quantiza-
tion effects for a direct DFT calculation,
and for a decimation-in-time FFT
calculation.

Numerical-Accuracy Effects
in DFT and FFT Calculations

In each complex multiplication, we
must perform four real multiplications.
Each of these contributes a round-off or
truncation error to the output. We need
to make some assumptions about the
errors in order to do any analysis of
them. Fixed-point, two’s-complement
arithmetic is assumed as well, as is
typical in an embedded implementa-
tion.12

First, if b is the number of bits used
to represent numbers, we’ll assume
the errors are uniformly distributed
over the range:

_2(—1741) <e< 2(—/)-]) (Eq 43)
Each one of the errors therefore has
variance:?

(-25)
o2=2 (Eq 44)
12
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Address Data
000 000
001 100
010 010
011 110
100 001
101 101
110 011
111 111

Fig 19—Bit-reversal look-up table.

Also, we assume the errors are
uncorrelated with each other, and also
uncorrelated with the input and output.

Since noise powers add, the average
value of the noise power is the expected
value of four times the variance:

ele] <[ )

272})

R
At the output, the noise power is N
times worse for the direct DFT calcu-
lation:

(Eq 45)

2

N-1 -2b
s Hel- 2N (Eq 46)
n=0 3

Just as in the case of FIR filter cal-
culations,® the noise at the output is
directly proportional to N.

Also like the FIR analysis, the DFT
calculations are subject to a dynamic-
range limitation on the large-signal
end of things. To prevent overflow, we
require:

and this can be ensured if:

N-1
Zolx(n)l <1 (Eq 48)
n=

We may need to scale the input by
1/N to prevent overflow. This scaling
requirement has the effect of making
the output noise worse, as will be dis-
cussed below.

For the decimation-in-time FFT cal-
culation, the same assumptions about
the nature of the noise are used. Refer-
ring to Fig 12, note that no more than
one noise source is inserted at each
node, because of the single complex
multiplication there. The total noise at
any node is the cumulative effect of all
sources that propagate through to that
node. Since we assume all the noise
sources are uncorrelated, nomore than
N - 1 noise sources propagate through
to each output. So, the total output
noise is, again, roughly proportional to
N. When we take into account the re-
quirement for data scaling, however,
we’ll see that the noise power must
increase because the signal power at
each node must decrease.

In fact, it can be shown® that the
SNR at the output—using optimum
stage-by-stage scaling—cannot be
better than:

(2b-2)

SNRourpur = (Eq 49)

N
or a factor of 12 worse than the result
given in Eq 46.
Until now, we’ve assumed absolute
accuracy for the values of the coeffi-
cients WNk”. Whether these are held in

|X(k)| <l (Eq 47) atable or calculated “on the fly,” they
by=0
. o ————» x(000) = x(0)
1
by =1
b= 0 L x(100) = x(4)
0=
by =0
s : ———————— x(010) = x(2)
1
by =1
L X(110) = x(B)
: x{bybrbo) |
by=0
. 0 — 3 x(001) = x(1)
1
by =1
oo o1 L —» x(101) = x(5)
0=

by

—— x(011) = x(3)

L e x(111)= x(7)

Fig 20—Bit-reversal tree.
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Fig 21—Bit-shifting register
arrangement.

must be quantified to some number of
bits, b; this results in further cumula-
tive error in the output. The analysis
of the effects is much more difficult
than that for data quantization above,
since the nature of coefficient quanti-
zation is inherently nonstatistical.

Useful results have been obtained!d
by introducing artificial noise or jitter
into the coefficients, and analyzing
the results for output error. The result
obtained was that output SNR cannot
exceed:

3(22b+l)
SNRoyrpuT = p (Eq 50)
where
p=log, N (Eq 51)

The experimental results confirmed
that noise from this effect increases in
proportion to p, which means the in-
crease with respect to N is slow. In
other words, doubling N results in
only a slight degradation in the SNR.

Engineering statistics is about the
grungiest thing in the world, isn’t it?
Nevertheless, it sure is nice to know
what to expect from these wonderful
theories before committing to an
implementation, because otherwise,
unexpected things can occur!

There is a different calculation
method for the DFT that ultimately
dispenses with complex exponentials
and improves speed and simplicity by
a significant factor. Frerking touches
ontheidea, but provides no method for
the control of its inherent divergence
problem (see Note 12). I call it the
“Damn-Fast Fourier Transform.”
We’ll begin with that method in Part 4
of this series.

Doug Smith, KF6DX /7, is an electri-
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designing HF transceivers, control sys-

tems and DSP hardware and software.
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(ALE) systems. At Kachina Communi-
cations in central Arizona, he is cur-
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