Register Account

Login Help


Respected Journal Publishes Explanation for Low Sunspots


An article in the March 3 issue of the journal Nature purports to explain the extended sunspot minimum from 2008-2010. According to one of the authors, Piet Martens, the last time a sunspot minimum lasted twice as long as usual was around 1913 and before that, 1810. Although solar activity has increased recently, scientists have been puzzled by the recent lack of sunspots. This quiet period had prevented the ionosphere from supporting much of the long-range higher frequency HF Amateur Radio communication that had been expected during the past few years.

After simulating 210 previous sunspot cycles, Martens, along with Dibyendu Nandi and Andres Munoz-Jaramillo, discovered that extended solar minima have coincided with unusually weak magnetic fields at the Sun’s poles. The three scientists were associated with Montana State University while they conducted their research.

NASA, which sponsored the research along with the Department of Science and Technology of the government of India, made this news release available on March 2:


WASHINGTON -- NASA-sponsored research has resulted in the first computer model that explains the recent period of decreased solar activity during the sun's 11-year cycle.

This recent solar minimum, a period characterized by a lower frequency of sunspots and solar storms, was the deepest observed in almost 100 years. The solar minimum has repercussions on the safety of space travel and the amount of orbital debris our planet accumulates.

Solar scientists around the world were puzzled by the extended disappearance of sunspots in 2008-2009. Results published in Thursday's edition of Nature indicate the mystery may be solved.

"Plasma currents deep inside the sun interfered with the formation of sunspots and prolonged the solar minimum," says lead author Dibyendu Nandi of the Indian Institute of Science Education and Research in Kolkata.

During this deep solar minimum, the sun's magnetic field weakened, allowing cosmic rays to penetrate the solar system in record numbers, making space a more dangerous place to travel. At the same time, the decrease in ultraviolet radiation caused Earth's upper atmosphere to cool and collapse.

As a consequence space debris stopped decaying and started accumulating in Earth orbit due to decreased atmospheric drag. These effects demonstrate the importance of understanding the entire solar cycle, during both minimum and maximum.

Observations from NASA's Solar Dynamics Observatory (SDO) will eventually provide measurements that could validate the current model and provide the basis for future solar cycle prediction.

"This research demonstrates how observations from Heliophysics System Observatory missions stimulate new theories and advance modeling techniques," said Richard Fisher, director of the Heliophysics Division in NASA's Science Mission Directorate at the agency's headquarters in Washington.

This research was funded by NASA's Living With a Star Program and the Department of Science and Technology of the government of India.

For more information about the research, visit -- Some information from the Bozeman Daily Chronicle



Instragram     Facebook     Twitter     YouTube     LinkedIn